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FOREWORD

The National Curriculum Framework (NCF), 2005 recommends that children’s life
at school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes a gap between the school, home and community. The syllabi and
textbooks developed on the basis of NCF signify an attempt to implement this basic
idea. They also attempt to discourage rote learning and the maintenance of sharp
boundaries between different subject areas. We hope these measures will take us
significantly further in the direction of a child-centred system of education outlined
in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue
imaginative activities and questions. We must recognise that, given space, time and
freedom, children generate new knowledge by engaging with the information passed
on to them by adults. Treating the prescribed textbook as the sole basis of examination
is one of the key reasons why other resources and sites of learning are ignored.
Inculcating creativity and initiative is possible if we perceive and treat children as
participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to
teaching. The methods used for teaching and evaluation will also determine how
effective this textbook proves for making children’s life at school a happy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stages with greater consideration for child psychology and the time available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this
book. We wish to thank the Chairperson of the advisory group in science
and mathematics, Professor J.V. Narlikar and the Chief Advisor for this book,
Professor A.W. Joshi for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisations
which have generously permitted us to draw upon their resources, material and
personnel. We are especially grateful to the members of the National Monitoring
Committee, appointed by the Department of Secondary and Higher Education,
Ministry of Human Resource Development under the Chairpersonship of Professor
Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution.
As an organisation committed to systemic reform and continuous improvement in
the quality of its products, NCERT welcomes comments and suggestions which will
enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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PREFACE

More than a decade ago, based on National Policy of Education (NPE-1986),
National Council of Educational Research and Training published physics
textbooks for Classes XI and XII, prepared under the chairmanship of
Professor T. V. Ramakrishnan, F.R.S., with the help of a team of learned co-authors.
The books were well received by the teachers and students alike. The books, in
fact, proved to be milestones and trend-setters. However, the development of
textbooks, particularly science books, is a dynamic process in view of the changing
perceptions, needs, feedback and the experiences of the students, educators and
the society. Another version of the physics books, which was the result of the
revised syllabus based on National Curriculum Framework for School Education-2000
(NCFSE-2000), was brought out under the guidance of Professor Suresh Chandra,
which continued up to now. Recently the NCERT brought out the National Curriculum
Frameworlk-2005 (NCF-2005), and the syllabus was accordingly revised during a
curriculum renewal process at school level. The higher secondary stage syllabus
(NCERT, 2005) has been developed accordingly. The Class XI textbook contains
fifteen chapters in two parts. Part I contains first eight chapters while Part II contains
next seven chapters. This book is the result of the renewed efforts of the present
Textbook Development Team with the hope that the students will appreciate the
beauty and logic of physics. The students may or may not continue to study physics
beyond the higher secondary stage, but we feel that they will find the thought
process of physics useful in any other branch they may like to pursue, be it finance,
administration, social sciences, environment, engineering, technology, biology or
medicine. For those who pursue physics beyond this stage, the matter developed
in these books will certainly provide a sound base.

Physics is basic to the understanding of almost all the branches of science and
technology. It is interesting to note that the ideas and concepts of physics are
increasingly being used in other branches such as economics and commerce, and
behavioural sciences too. We are conscious of the fact that some of the underlying
simple basic physics principles are often conceptually quite intricate. In this book,
we have tried to bring in a conceptual coherence. The pedagogy and the use of
easily understandable language are at the core of our effort without sacrificing the
rigour of the subject. The nature of the subject of physics is such that a certain
minimum use of mathematics is a must. We have tried to develop the mathematical
formulations in a logical fashion, as far as possible.

Students and teachers of physics must realise that physics is a branch which
needs to be understood, not necessarily memorised. As one goes from secondary to
higher secondary stage and beyond, physics involves mainly four components,
(a) large amount of mathematical base, (b) technical words and terms, whose
normal English meanings could be quite different, (c) new intricate concepts,
and (d) experimental foundation. Physics needs mathematics because we wish
to develop objective description of the world around us and express our observations
in terms of measurable quantities. Physics discovers new properties of particles
and wants to create a name for each one. The words are picked up normally from
common English or Latin or Greek, but gives entirely different meanings to these
words. It would be illuminating to look up words like energy, force, power, charge,
spin, and several others, in any standard English dictionary, and compare their
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meanings with their physics meanings. Physics develops intricate and often weird-
looking concepts to explain the behaviour of particles. Finally, it must be
remembered that entire physics is based on observations and experiments, without
which a theory does not get acceptance into the domain of physics.

This book has some features which, we earnestly hope, will enhance its
usefulness for the students. Each chapter is provided with a Summary at its end
for a quick overview of the contents of the chapter. This is followed by Points to
Ponder which points out the likely misconceptions arising in the minds of students,
hidden implications of certain statements/principles given in the chapter and
cautions needed in applying the knowledge gained from the chapter. They also
raise some thought-provoking questions which would make a student think about
life beyond physics. Students will find it interesting to think and apply their mind
on these points. Further, a large number of solved examples are included in the
text in order to clarify the concepts and/or to illustrate the application of these
concepts in everyday real-life situations. Occasionally, historical perspective has
been included to share the excitement of sequential development of the subject of
physics. Some Boxed items are introduced in many chapters either for this purpose
or to highlight some special features of the contents requiring additional attention
of the learners. Finally, a Subject Index has been added at the end of the book for
ease in locating keywords in the book.

The special nature of physics demands, apart from conceptual understanding,
the knowledge of certain conventions, basic mathematical tools, numerical values
of important physical constants, and systems of measurement units covering a
vast range from microscopic to galactic levels. In order to equip the students, we
have included the necessary tools and database in the form of Appendices A-1 to
A-9 at the end of the book. There are also some other appendices at the end of
some chapters giving additional information or applications of matter discussed in
that chapter.

Special attention has been paid for providing illustrative figures. To increase
the clarity, the figures are drawn in two colours. A large number of Exercises are
given at the end of each chapter. Some of these are from real-life situations. Students
are urged to solve these and in doing so, they may find them very educative. Moreover,
some Additional Exercises are given which are more challenging. Answers and
hints to solve some of these are also included. In the entire book, SI units have been
used. A comprehensive account of ‘units and measurement’ is given in Chapter 2 as a
part of prescribed syllabus/curriculum as well as a help in their pursuit of physics.
A box-item in this chapter brings out the difficulty in measuring as simple a thing as
the length of a long curved line. Tables of SI base units and other related units are
given here merely to indicate the presently accepted definitions and to indicate the
high degree of accuracy with which measurements are possible today. The numbers
given here are not to be memorised or asked in examinations.

There is a perception among students, teachers, as well as the general public
that there is a steep gradient between secondary and higher secondary stages.
But a little thought shows that it is bound to be there in the present scenario of
education. Education up to secondary stage is general education where a student
has to learn several subjects — sciences, social sciences, mathematics, languages,
at an elementary level. Education at the higher secondary stage and beyond, borders
on acquiring professional competence, in some chosen fields of endeavour. You
may like to compare this with the following situation. Children play cricket or
badminton in lanes and small spaces outside (or inside) their homes. But then
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some of them want to make it to the school team, then district team, then State
team and then the National team. At every stage, there is bound to be a steep
gradient. Hard work would have to be put in whether students want to pursue
their education in the area of sciences, humanities, languages, music, fine arts,
commerce, finance, architecture, or if they want to become sportspersons or fashion
designers.

Completing this book has only been possible because of the spontaneous
and continuous support of many people. The Textbook Development Team is
thankful to Dr. V. H. Raybagkar for allowing us to use his box item in Chapter
4 and to Dr. F. I. Surve for allowing us to use two of his box items in Chapter 15.
We express also our gratitude to the Director, NCERT, for entrusting us with
the task of preparing this textbook as a part of national effort for improving
science education. The Head, Department of Education in Science and
Mathematics, NCERT, was always willing to help us in our endeavour in every
possible way.

The previous text got excellent academic inputs from teachers, students and
experts who sincerely suggested improvement during the past few years. We are
thankful to all those who conveyed these inputs to NCERT. We are also thankful to
the members of the Review Workshop and Editing Workshop organised to discuss
and refine the first draft. We thank the Chairmen and their teams of authors for
the text written by them in 1988, which provided the base and reference for
developing the 2002 version as well as the present version of the textbook.
Occasionally, substantial portions from the earlier versions, particularly those
appreciated by students/teachers, have been adopted/adapted and retained in
the present book for the benefit of coming generation of learners.

We welcome suggestions and comments from our valued users, especially
students and teachers. We wish our young readers a happy journey to the exciting
realm of physics.

A. W. JosHI
Chief Advisor
Textbook Development Committee
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COVER DESIGN

(Adapted from the website of the Nobel Foundation

http://www.nobelprize.org)

The strong nuclear force binds protons and
neutrons in a nucleus and is the strongest of
nature’s four fundamental forces. A mystery
surrounding the strong nuclear force has been
solved. The three quarks within the proton can
sometimes appear to be free, although no free
quarks have ever been observed. The quarks
have a quantum mechanical property called
‘colour’ and interact with each other through
the exchange of particles called ‘gluons’
— nature glue.

Back CoOvER

(Adapted from the website of the ISRO
http://www.isro.gov.in)

CARTOSAT-1 is a state-of-the-art Remote
Sensing Satellite, being eleventh one in the
Indian Remote Sensing (IRS) Satellite Series,
built by ISRO. CARTOSAT-1, having mass of
156 kg at lift off, has been launched into a
618 km high polar Sun Synchronous Orbit (SSO)
by ISRO’s Polar Satellite Launch Vehicle,
PSLV-C6. It is mainly intended for cartographic
applications.
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A NoOTE FOR THE TEACHERS

To make the curriculum learner-centred, students should be made to participate and interact
in the learning process directly. Once a week or one out of every six classes would be a good
periodicity for such seminars and mutual interaction. Some suggestions for making the discussion
participatory are given below, with reference to some specific topics in this book.

Students may be divided into groups of five to six. The membership of these groups may be
rotated during the year, if felt necessary.

The topic for discussion can be presented on the board or on slips of paper. Students should
be asked to write their reactions or answers to questions, whichever is asked, on the given
sheets. They should then discuss in their groups and add modifications or comments in those
sheets. These should be discussed either in the same or in a different class. The sheets may also
be evaluated.

We suggest here three possible topics from the book. The first two topics suggested are, in
fact, very general and refer to the development of science over the past four centuries or more.
Students and teachers may think of more such topics for each seminar.

1. Ideas that changed civilisation

Suppose human beings are becoming extinct. A message has to be left for future generations or
alien visitors. Eminent physicist R P Feynmann wanted the following message left for future
beings, if any.
“Matter is made up of atoms”
A lady student and teacher of literature, wanted the following message left:
“Water existed, so human beings could happen”.

Another person thought it should be: “Idea of wheel for motion”

Write down what message each one of you would like to leave for future generations. Then
discuss it in your group and add or modify, if you want to change your mind. Give it to your
teacher and join in any discussion that follows.

2. Reductionism

Kinetic Theory of Gases relates the Big to the Small, the Macro to the Micro. A gas as a system
is related to its components, the molecules. This way of describing a system as a result of the
properties of its components is usually called Reductionism. It explains the behaviour of the
group by the simpler and predictable behaviour of individuals. Macroscopic observations and
microscopic properties have a mutual interdependence in this approach. Is this method useful?

This way of understanding has its limitations outside physics and chemistry, may be even
in these subjects. A painting cannot be discussed as a collection of the properties of chemicals
used in making the canvas and the painting. What emerges is more than the sum of its
components.

Question: Can you think of other areas where such an approach is used?

Describe briefly a system which is fully describable in terms of its components. Describe
one which is not. Discuss with other members of the group and write your views. Give it to your
teacher and join in any discussion that may follow.

3. Molecular approach to heat

Describe what you think will happen in the following case. An enclosure is separated by a
porous wall into two parts. One is filled with nitrogen gas (N,) and the other with CO,. Gases
will diffuse from one side to the other.

Question 1: Will both gases diffuse to the same extent? If not, which will diffuse more. Give
reasons.

Question 2: Will the pressure and temperature be unchanged? If not, what will be the changes
in both. Give reasons.

Write down your answers. Discuss with the group and modify them or add comments.
Give to the teacher and join in the discussion.

Students and teachers will find that such seminars and discussions lead to tremendous
understanding, not only of physics, but also of science and social sciences. They also bring in
some maturity among students.
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11087CH09

MECHANICAL PROPERTIES OF SOLIDS
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Stress-strain curve
Elastic moduli
Applications of elastic
behaviour of materials
Summary

Points to ponder
Exercises

Additional exercises

9.1 INTRODUCTION

In Chapter 7, we studied the rotation of the bodies and then
realised that the motion of a body depends on how mass is
distributed within the body. We restricted ourselves to simpler
situations of rigid bodies. A rigid body generally means a
hard solid object having a definite shape and size. But in
reality, bodies can be stretched, compressed and bent. Even
the appreciably rigid steel bar can be deformed when a
sufficiently large external force is applied on it. This means
that solid bodies are not perfectly rigid.

A solid has definite shape and size. In order to change (or
deform) the shape or size of a body, a force is required. If
you stretch a helical spring by gently pulling its ends, the
length of the spring increases slightly. When you leave the
ends of the spring, it regains its original size and shape. The
property of a body, by virtue of which it tends to regain its
original size and shape when the applied force is removed, is
known as elasticity and the deformation caused is known
as elastic deformation. However, if you apply force to a lump
of putty or mud, they have no gross tendency to regain their
previous shape, and they get permanently deformed. Such
substances are called plastic and this property is called
plasticity. Putty and mud are close to ideal plastics.

The elastic behaviour of materials plays an important role
in engineering design. For example, while designing a
building, knowledge of elastic properties of materials like steel,
concrete etc. is essential. The same is true in the design of
bridges, automobiles, ropeways etc. One could also ask —
Can we design an aeroplane which is very light but
sufficiently strong? Can we design an artificial limb which
is lighter but stronger? Why does a railway track have a
particular shape like I? Why is glass brittle while brass is
not? Answers to such questions begin with the study of how
relatively simple kinds of loads or forces act to deform
different solids bodies. In this chapter, we shall study the
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elastic behaviour and mechanical properties of
solids which would answer many such
questions.

9.2 ELASTIC BEHAVIOUR OF SOLIDS

We know that in a solid, each atom or molecule
is surrounded by neighbouring atoms or
molecules. These are bonded together by
interatomic or intermolecular forces and stay
in a stable equilibrium position. When a solid is
deformed, the atoms or molecules are displaced
from their equilibrium positions causing a
change in the interatomic (or intermolecular)
distances. When the deforming force is removed,
the interatomic forces tend to drive them back
to their original positions. Thus the body regains
its original shape and size. The restoring
mechanism can be visualised by taking a model
of spring-ball system shown in the Fig. 9.1. Here
the balls represent atoms and springs represent
interatomic forces.

Fig. 9.1 Spring-ball model for the illustration of elastic
behaviour of solids.

If you try to displace any ball from its
equilibrium position, the spring system tries to
restore the ball back to its original position. Thus
elastic behaviour of solids can be explained in
terms of microscopic nature of the solid. Robert
Hooke, an English physicist (1635 - 1703 A.D)
performed experiments on springs and found
that the elongation (change in the length)
produced in a body is proportional to the applied
force or load. In 1676, he presented his law of

2020-21

elasticity, now called Hooke’s law. We shall
study about it in Section 9.4. This law, like
Boyle’s law, is one of the earliest quantitative
relationships in science. It is very important to
know the behaviour of the materials under
various kinds of load from the context of
engineering design.

9.3 STRESS AND STRAIN

When forces are applied on a body in such a
manner that the body is still in static equilibrium,
itis deformed to a small or large extent depending
upon the nature of the material of the body and
the magnitude of the deforming force. The
deformation may not be noticeable visually in
many materials but it is there. When a body is
subjected to a deforming force, a restoring force
is developed in the body. This restoring force is
equal in magnitude but opposite in direction to
the applied force. The restoring force per unit area
is known as stress. If F'is the force applied normal
to the cross—section and A is the area of cross
section of the body,
Magnitude of the stress = F/A 9.1)
The SI unit of stress is N m™ or pascal (Pa)
and its dimensional formula is [ ML T2 ].
There are three ways in which a solid may
change its dimensions when an external force
acts on it. These are shown in Fig. 9.2. In
Fig.9.2(a), a cylinder is stretched by two equal
forces applied normal to its cross-sectional area.
The restoring force per unit area in this case
is called tensile stress. If the cylinder is
compressed under the action of applied forces,
the restoring force per unit area is known as
compressive stress. Tensile or compressive
stress can also be termed as longitudinal stress.
In both the cases, there is a change in the
length of the cylinder. The change in the length
AL to the original length L of the body (cylinder
in this case) is known as longitudinal strain.

AL
Longitudinal strain = T 9.2)

However, if two equal and opposite deforming
forces are applied parallel to the cross-sectional
area of the cylinder, as shown in Fig. 9.2(b),
there is relative displacement between the
opposite faces of the cylinder. The restoring force
per unit area developed due to the applied
tangential force is known as tangential or
shearing stress.
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Robert Hooke
(1635 - 1703 A.D.)
Robert Hooke was born on July 18, 1635 in Freshwater, Isle of Wight. He was
one of the most brilliant and versatile seventeenth century English scientists.
He attended Oxford University but never graduated. Yet he was an extremely
talented inventor, instrument-maker and building designer. He assisted Robert
Boyle in the construction of Boylean air pump. In 1662, he was appointed as
Curator of Experiments to the newly founded Royal Society. In 1665, he became
Professor of Geometry in Gresham College where he carried out his astronomi-
cal observations. He built a Gregorian reflecting telescope; discovered the fifth
star in the trapezium and an asterism in the constellation Orion; suggested that
Jupiter rotates on its axis; plotted detailed sketches of Mars which were later
used in the 19™ century to determine the planet’s rate of rotation; stated the
inverse square law to describe planetary motion, which Newton modified later
etc. He was elected Fellow of Royal Society and also served as the Society’s

Secretary from 1667 to 1682. In his series of observations presented in Micrographia, he suggested
wave theory of light and first used the word ‘cell’ in a biological context as a result of his studies of cork.

Robert Hooke is best known to physicists for his discovery of law of elasticity: Ut tensio, sie vis (This
is a Latin expression and it means as the distortion, so the force). This law laid the basis for studies of

stress and strain and for understanding the elastic materials.

As a result of applied tangential force, there
is a relative displacement Ax between opposite
faces of the cylinder as shown in the Fig. 9.2(b).
The strain so produced is known as shearing
strain and it is defined as the ratio of relative
displacement of the faces Ax to the length of
the cylinder L.

Shearing strain = T =tan 6 9.3)
where 6 is the angular displacement of the
cylinder from the vertical (original position of
the cylinder). Usually 6 is very small, tan 6
is nearly equal to angle 6, (if 6 = 10°, for
example, there is only 1% difference between 6
and tan 6).

f———

(@ (b)

It can also be visualised, when a book is
pressed with the hand and pushed horizontally,
as shown in Fig. 9.2 (c).

Thus, shearing strain =tan 6= 6 9.4)

In Fig. 9.2 (d), a solid sphere placed in the
fluid under high pressure is compressed
uniformly on all sides. The force applied by the
fluid acts in perpendicular direction at each
point of the surface and the body is said to be
under hydraulic compression. This leads to
decrease in its volume without any change of
its geometrical shape.

The body develops internal restoring forces
that are equal and opposite to the forces applied
by the fluid (the body restores its original shape
and size when taken out from the fluid). The
internal restoring force per unit area in this case

(c) (d)

Fig. 9.2  (a) A cylindrical body under tensile stress elongates by AL (b) Shearing stress on a cylinder deforming it by
an angle 6 (c) A body subjected to shearing stress (d) A solid body under a stress normal to the surface at
every point (hydraulic stress). The volumetric strain is AV/V, but there is no change in shape.
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is known as hydraulic stress and in magnitude
is equal to the hydraulic pressure (applied force
per unit area).

The strain produced by a hydraulic pressure
is called volume strain and is defined as the
ratio of change in volume (AV) to the original
volume (V).

AV

Volume strain = 7 (9.5)

Since the strain is a ratio of change in
dimension to the original dimension, it has no
units or dimensional formula.

9.4 HOOKE'S LAW

Stress and strain take different forms in the
situations depicted in the Fig. (9.2). For small
deformations the stress and strain are
proportional to each other. This is known as
Hooke’s law.

Thus,
stress o« strain
stress = k x strain (9.6)

where Ik is the proportionality constant and is
known as modulus of elasticity.

Hooke’s law is an empirical law and is found
to be valid for most materials. However, there
are some materials which do not exhibit this
linear relationship.

9.5 STRESS-STRAIN CURVE

The relation between the stress and the strain
for a given material under tensile stress can be
found experimentally. In a standard test of
tensile properties, a test cylinder or a wire is
stretched by an applied force. The fractional
change in length (the strain) and the applied
force needed to cause the strain are recorded.
The applied force is gradually increased in steps
and the change in length is noted. A graph is
plotted between the stress (which is equal in
magnitude to the applied force per unit area)
and the strain produced. A typical graph for a
metal is shown in Fig. 9.3. Analogous graphs
for compression and shear stress may also be
obtained. The stress-strain curves vary from
material to material. These curves help us to
understand how a given material deforms with
increasing loads. From the graph, we can see
that in the region between O to A, the curve is
linear. In this region, Hooke’s law is obeyed.
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The body regains its original dimensions when
the applied force is removed. In this region, the
solid behaves as an elastic body.

....... Proportional limit D
yield point E
X Fracture
Gy || e point
A
N
1
1
w2 1‘
g /
7 !
1
1
|
M:/Permanent set
I
0 % ) 30%
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Fig. 9.3 A typical stress-strain curve for a metal.

In the region from A to B, stress and strain
are not proportional. Nevertheless, the body still
returns to its original dimension when the load
is removed. The point B in the curve is known
as yield point (also known as elastic limit) and
the corresponding stress is known as yield
strength (o ) of the material.

If the load is increased further, the stress
developed exceeds the yield strength and strain
increases rapidly even for a small change in the
stress. The portion of the curve between B and
D shows this. When the load is removed, say at
some point C between B and D, the body does
not regain its original dimension. In this case,
even when the stress is zero, the strain is not
zero. The material is said to have a permanent
set. The deformation is said to be plastic
deformation. The point D on the graph is the
ultimate tensile strength (o) of the material.
Beyond this point, additional strain is produced
even by a reduced applied force and fracture
occurs at point E. If the ultimate strength and
fracture points D and E are close, the material
is said to be brittle. If they are far apart, the
material is said to be ductile.

As stated earlier, the stress-strain behaviour
varies from material to material. For example,
rubber can be pulled to several times its original
length and still returns to its original shape.
Fig. 9.4 shows stress-strain curve for the elastic
tissue of aorta, present in the heart. Note that
although elastic region is very large, the material
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Fig. 9.4 Stress-strain curve for the elastic tissue of
Aorta, the large tube (vessel) carrying blood
from the heart.

does not obey Hooke’s law over most of the
region. Secondly, there is no well defined plastic
region. Substances like tissue of aorta, rubber
etc. which can be stretched to cause large strains
are called elastomers.

9.6 ELASTIC MODULI

The proportional region within the elastic limit
of the stress-strain curve (region OA in Fig. 9.3)
is of great importance for structural and
manufacturing engineering designs. The ratio
of stress and strain, called modulus of elasticity,
is found to be a characteristic of the material.

9.6.1 Young’'s Modulus

Experimental observation show that for a given
material, the magnitude of the strain produced
is same whether the stress is tensile or
compressive. The ratio of tensile (or compressive)
stress (o) to the longitudinal strain (¢) is defined as
Young’s modulus and is denoted by the symbol Y.

_9
= 9.7)

From Eqgs. (9.1) and (9.2), we have

Y =(F/A)/(AL/L)
=(FxL) /(Ax AL) (9.8)

Since strain is a dimensionless quantity, the
unit of Young’s modulus is the same as that of
stress i.e., N m2 or Pascal (Pa). Table 9.1 gives
the values of Young’s moduli and yield strengths
of some material.

From the data given in Table 9.1, it is noticed
that for metals Young's moduli are large.
Therefore, these materials require a large force
to produce small change in length. To increase
the length of a thin steel wire of 0.1 cm? cross-
sectional area by 0.1%, a force of 2000 N is
required. The force required to produce the same
strain in aluminium, brass and copper wires
having the same cross-sectional area are 690 N,
900 N and 1100 N respectively. It means that
steel is more elastic than copper, brass and
aluminium. It is for this reason that steel is

Table 9.1 Young’'s moduli and yield strenghs of some material

Density p | Young's modulus

Substance (kg m?) Y (10°N m?)

Aluminium 2710

Copper 8890 110
Iron (wrought) 7800-7900 @ 190
Steel 7860 200
Glass® 2190 65
Concrete 2320 30
Wood* 525 13
Bone* 1900 9.4
Polystyrene 1050 3

Ultimate Yield strength
strength, 6 2
o, (10°Nm? | &U10Nm)
400 200
330 170
400 250
50 —
40 —
50 —
170 —
48 —

# Substance tested under compression
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preferred in heavy-duty machines and in
structural designs. Wood, bone, concrete and
glass have rather small Young’s moduli.

Example 9.1 A structural steel rod has a
radius of 10 mm and a length of 1.0 m. A
100 kN force stretches it along its length.
Calculate (a) stress, (b) elongation, and (c)
strain on the rod. Young’s modulus, of
structural steel is 2.0 x 10!! N m™2.

Answer We assume that the rod is held by a
clamp at one end, and the force F is applied at
the other end, parallel to the length of the rod.
Then the stress on the rod is given by

F
Stress = — = —
r
_ 100x10°N
- 2
3.14 x (10”m)

=3.18 x 108 N m2

The elongation,

(F/A)L
Y

AL =

(3.18 x10°N m™)(1m)
2

2x10''N m
=1.59x 103 m
=1.59 mm

The strain is given by

Strain = AL/L

=(1.59 x 102 m)/(1m)

=1.59 x 103

=0.16 % <

Example 9.2 A copper wire of length 2.2
m and a steel wire of length 1.6 m, both of
diameter 3.0 mm, are connected end to end.
When stretched by a load, the net
elongation is found to be 0.70 mm. Obtain
the load applied.

Answer The copper and steel wires are under
a tensile stress because they have the same
tension (equal to the load W) and the same area
of cross-section A. From Eq. (9.7) we have stress
= strain x Young’s modulus. Therefore
W/A=Y_ x(AL/L) =Y x (AL,/L)
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where the subscripts ¢ and s refer to copper
and stainless steel respectively. Or,
AL /AL = (Y,/Y) x (L./L)
Given L, =2.2m, L,= 1.6 m,
From Table 9.1 Y, = 1.1 x 10" N.m™2, and
Y, =2.0x 10" N.m™.
AL /AL =(2.0x 10''/1.1 x 10') x (2.2/1.6) = 2.5.
The total elongation is given to be
AL,+AL,= 7.0 x10*m

Solving the above equations,
AL,=5.0 x 10*m, and AL ,=2.0 x 10*m.
Therefore
W =(AxY_xAL)/L,

= (1.5x 1032 x[(5.0x10%x 1.1 x10')/2.2]

=1.8x 102N <

S Example 9.3 In a human pyramid in a
circus, the entire weight of the balanced
group is supported by the legs of a
performer who is lying on his back (as
shown in Fig. 9.5). The combined mass of
all the persons performing the act, and the
tables, plaques etc: involved is 280 kg. The
mass of the performer lying on his back at
the bottom of the pyramid is 60 kg. Each
thighbone (femur) of this performer has a
length of 50 cm and an effective radius of
2.0 cm. Determine the amount by which
each thighbone gets compressed under the
extra load.

Fig. 9.5 Human pyramid in a circus.
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Answer Total mass of all the performers, tables,
plaques etc. =280 kg

Mass of the performer = 60 kg

Mass supported by the legs of the performer
at the bottom of the pyramid

=280 -60 =220 kg

Weight of this supported mass

=220 kg wt. =220 x 9.8 N = 2156 N.

Weight supported by each thighbone of the
performer =% (2156) N = 1078 N.

From Table 9.1, the Young’s modulus for bone
is given by

Y = 9.4 x10°Nm=2.

Length of each thighbone L = 0.5 m

the radius of thighbone = 2.0 cm

Thus the cross-sectional area of the thighbone
A =1x(2x%x102)2m?=1.26 x 10° m?2.
Using Eq. (9.8), the compression in each
thighbone (AL) can be computed as

AL [(FxL)/(Yx A)

[(1078 x0.5)/(9.4 x 109x 1.26 x 109)]
4.55x 10®% m or 4.55 x 10° cm.

This is a very small change! The fractional
decrease in the thighbone is AL/L = 0.000091
or 0.0091%. <

9.6.2 Determination of Young’s Modulus of
the Material of a Wire

A typical experimental arrangement to determine
the Young’s modulus of a material of wire under
tension is shown in Fig. 9.6. It consists of two
long straight wires of same length and equal
radius suspended side by side from a fixed rigid
support. The wire A (called the reference wire)
carries a millimetre main scale M and a pan to
place a weight. The wire B (called the
experimental wire) of uniform area of cross-
section also carries a pan in which known
weights can be placed. A vernier scale V is
attached to a pointer at the bottom of the
experimental wire B, and the main scale M is
fixed to the reference wire A. The weights placed
in the pan exert a downward force and stretch
the experimental wire under a tensile stress. The
elongation of the wire (increase in length) is
measured by the vernier arrangement. The
reference wire is used to compensate for any
change in length that may occur due to change
in room temperature, since any change in length
of the reference wire due to temperature change

will be accompanied by an equal change in
experimental wire. (We shall study these
temperature effects in detail in Chapter 11.)

-] -]
A B
Reference Experimental
Wire Wire

\%

M| - ;—| (Vernier Scale)
(Metre Scale) =

L
[

L8 Load

Fig. 9.6 An arrangement for the determination of
Young’s modulus of the material of a wire.

Both the reference and experimental wires are
given an initial small load to keep the wires
straight and the vernier reading is noted. Now
the experimental wire is gradually loaded with
more weights to bring it under a tensile stress
and the vernier reading is noted again. The
difference between two vernier readings gives
the elongation produced in the wire. Let rand L
be the initial radius and length of the
experimental wire, respectively. Then the area
of cross-section of the wire would be nr. Let M
be the mass that produced an elongation AL in
the wire. Thus the applied force is equal to Mg,
where g is the acceleration due to gravity. From
Eq. (9.8), the Young’s modulus of the material
of the experimental wire is given by

o _Mg L
Y= T AL
= Mg x L/(nr® x AL) 9.9)
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9.6.3 Shear Modulus
The ratio of shearing stress to the corresponding
shearing strain is called the shear modulus of
the material and is represented by G. It is also
called the modulus of rigidity.

G = shearing stress (0 )/shearing strain

G =(F/A)/(Ax/L)

=(FxL/(AxAX (9.10)
Similarly, from Eq. (9.4)
G =(F/A)/6
=F/(Ax 6 (9.11)
The shearing stress o, can also be expressed as
c,= G x6 (9.12)

SI unit of shear modulus is N m™ or Pa. The
shear moduli of a few common materials are
given in Table 9.2. It can be seen that shear
modulus (or modulus of rigidity) is generally less
than Young’s modulus (from Table 9.1). For most
materials G= Y/3.

Table 9.2 Shear moduli (G) of some common

materials

G (10° Nm~2

or GPa)
Aluminium 25
Brass 36
Copper 42
Glass 23
Iron 70
Lead 5.6
Nickel 77
Steel 84
Tungsten 150
Wood 10

Example 9.4 A square lead slab of side 50
cm and thickness 10 em is subject to a
shearing force (on its narrow face) of 9.0 x
10* N. The lower edge is riveted to the floor.
How much will the upper edge be displaced?

Answer The lead slab is fixed and the force is
applied parallel to the narrow face as shown in
Fig. 9.7. The area of the face parallel to which
this force is applied is
A =50cm x 10 cm
=0.5mx0.1m

= 0.05 m?
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Therefore, the stress applied is
=(9.4 x 10* N/0.05 m?)
=1.80 x 10° N.m™2

50 cm

We know that shearing strain = (Ax/L)= Stress /G.

Therefore the displacement Ax = (Stress x L)/ G
=(1.8x 10 Nm2x0.5m)/(5.6 x 10° N m?)
=1.6x10%*m =0.16 mm <

9.6.4 Bulk Modulus

In Section (9.3), we have seen that when a body
is submerged in a fluid, it undergoes a hydraulic
stress (equal in magnitude to the hydraulic
pressure). This leads to the decrease in the
volume of the body thus producing a strain called
volume strain [Eq. (9.5)]. The ratio of hydraulic
stress to the corresponding hydraulic strain is
called bulk modulus. It is denoted by symbol B.

B=-p/(AV/V) (9.13)

The negative sign indicates the fact that with
an increase in pressure, a decrease in volume
occurs. That is, if p is positive, AV is negative.
Thus for a system in equilibrium, the value of
bulk modulus B is always positive. SI unit of
bulk modulus is the same as that of pressure
i.e., N m2 or Pa. The bulk moduli of a few
common materials are given in Table 9.3.

The reciprocal of the bulk modulus is called
compressibility and is denoted by k. It is defined
as the fractional change in volume per unit
increase in pressure.

k=(1/B) =-(1/Ap) x (AV/V) (9.14)

It can be seen from the data given in Table
9.3 that the bulk moduli for solids are much
larger than for liquids, which are again much
larger than the bulk modulus for gases (air).
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Table 9.3 Bulk moduli (B) of some common
Materials

Material
Solids

B (10° N m~2 or GPa)

72
61
140
37
100
260
160
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Table 9.4 Stress, strain

Type of Stress Strain

stress

Two equal and
opposite forces
perpendicular to
opposite faces

Two equal and
opposite forces&
parallel to o e
surfaces fo

in each

that t force and
total tor on the
body vanishes

Forces perpendicular
everywhere to the
surface, force per
unit area (pressure)
same everywhere.

Gases have large compressibilities, which vary
with pressure and temperature. The
incompressibility of the solids is primarily due
to the tight coupling between the neighbouring
atoms. The molecules in liquids are also bound
with their neighbours but not as strong as in
solids. Molecules in gases are very poorly
coupled to their neighbours.

Table 9.4 shows the various types of stress,
strain, elastic moduli, and the applicable state
of matter at a glance.

Example 9.5 The average depth of Indian
Ocean is about 3000 m. Calculate the
fractional compression, AV/V, of water at
the bottom of the ocean, given that the bulk
modulus of water is 2.2 x 10° N m=. (Take

g =10m s?)

Answer The pressure exerted by a 3000 m
column of water on the bottom layer

p=hpg =3000m x 1000 kg m= x 10 m s2
=3 x 10" kg m! s?
=3 x 10" Nm™>
Fractional compression AV/V, is
AV/V = stress/B =(3x 10" Nm?)/(2.2x 10°Nm™?)
=1.36x 1020r 1.36% <«

and various elastic moduli

Change in Elastic Name of | State of
m Modulus | Modulus | Matter

Yes Y = (FXL)/ Solid
(AxAL)
G = F/(Ax6) Solid

B = -p/(AV/V) Solid, liquid

and gas
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9.6.5 PoissoN’s RaTio

Careful observations with the Young’s modulus
experiment (explained in section 9.6.2), show
that there is also a slight reduction in the cross-
section (or in the diameter) of the wire. The strain
perpendicular to the applied force is called
lateral strain. Simon Poisson pointed out that
within the elastic limit, lateral strain is directly
proportional to the longitudinal strain. The ratio
of the lateral strain to the longitudinal strain in
a stretched wire is called Poisson’s ratio. If the
original diameter of the wire is d and the
contraction of the diameter under stress is Ad,
the lateral strain is Ad/d. If the original length
of the wire is L and the elongation under stress
is AL, the longitudinal strain is AL/L. Poisson’s
ratio is then (Ad/d)/(AL/L) or (Ad/AL) X (L/d).
Poisson’s ratio is a ratio of two strains; it is a
pure number and has no dimensions or units.
Its value depends only on the nature of material.
For steels the value is between 0.28 and 0.30,
and for aluminium alloys it is about 0.33.

9.6.6 Elastic Potential Energy
in a Stretched Wire

When a wire is put under a tensile stress, work
is done against the inter-atomic forces. This
work is stored in the wire in the form of elastic
potential energy. When a wire of original length
L and area of cross-section A is subjected to a
deforming force F along the length of the wire,
let the length of the wire be elongated by L Then
from Eq. (9.8), we have F = YA X (I/L). Here Yis
the Young’s modulus of the material of the wire.
Now for a further elongation of infinitesimal
small length dl, work done dWis F x dlor YAldl/
L. Therefore, the amount of work done (W) in
increasing the length of the wire from Lto L + [,
thatis from l=0to l=1lis

. YAl YA P
=[P A=tk
w=], L 2 "L

lex(ljz x AL
W= L

X Young’'s modulus X strain? x

volume of the wire
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1
= EX stress X strain X volume of the

wire
This work is stored in the wire in the form of
elastic potential energy (U). Therefore the elastic
potential energy per unit volume of the wire (1) is

1
u= EXO'S (9.15)

9.7 APPLICATIONS OF ELASTIC
BEHAVIOUR OF MATERIALS

The elastic behaviour of materials plays an
important role in everyday life. All engineering
designs require precise knowledge of the elastic
behaviour of materials. For example while
designing a building, the structural design of
the columns, beams and supports require
knowledge of strength of materials used. Have
you ever thought why the beams used in
construction of bridges, as supports etc. have
a cross-section of the type I? Why does a heap
of sand or a hill have a pyramidal shape?
Answers to these questions can be obtained
from the study of structural engineering which
is based on concepts developed here.

Cranes used for lifting and moving heavy
loads from one place to another have a thick
metal rope to which the load is attached. The
rope is pulled up using pulleys and motors.
Suppose we want to make a crane, which has
a lifting capacity of 10 tonnes or metric tons (1
metric ton = 1000 kg). How thick should the
steel rope be? We obviously want that the load
does not deform the rope permanently.
Therefore, the extension should not exceed the
elastic limit. From Table 9.1, we find that mild
steel has a yield strength (o)) of about 300 x
10 N m™2. Thus, the area of cross-section (A)
of the rope should at least be

A> W/O'y = Mg/ay 9.16)
= (10*kg x 9.8 m s2)/(300 x 108 N m?)
= 3.3x 10*m?

corresponding to a radius of about 1 cm for
a rope of circular cross-section. Generally
a large margin of safety (of about a factor of
ten in the load) is provided. Thus a thicker
rope of radius about 3 cm is recommended.
A single wire of this radius would practically
be a rigid rod. So the ropes are always made
of a number of thin wires braided together,
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like in pigtails, for ease in manufacture,
flexibility and strength.

A bridge has to be designed such that it can
withstand the load of the flowing traffic, the force
of winds and its own weight. Similarly, in the
design of buildings the use of beams and columns
is very common. In both the cases, the
overcoming of the problem of bending of beam
under a load is of prime importance. The beam
should not bend too much or break. Let us
consider the case of a beam loaded at the centre
and supported near its ends as shown in
Fig. 9.8. Abar of length [, breadth b, and depth d
when loaded at the centre by a load W sags by
an amount given by

0= W13/(4bd?Y) (9.17)

Y

Fig. 9.8 A beam supported at the ends and loaded
at the centre.

This relation can be derived using what you
have already learnt and a little calculus. From
Eq. (9.16), we see that to reduce the bending
for a given load, one should use a material with
alarge Young’s modulus Y. For a given material,
increasing the depth drather than the breadth
b is more effective in reducing the bending, since
§ is proportional to d 3 and only to b'!(of course
the length [ of the span should be as small as
possible). But on increasing the depth, unless
the load is exactly at the right place (difficult to
arrange in a bridge with moving traffic), the
deep bar may bend as shown in Fig. 9.9(b). This
is called buckling. To avoid this, a common
compromise is the cross-sectional shape shown
in Fig. 9.9(c). This section provides a large load-
bearing surface and enough depth to prevent
bending. This shape reduces the weight of the
beam without sacrificing the strength and
hence reduces the cost.

f—=a

L |
o

(a) (b) (c)

Fig. 9.9  Different cross-sectional shapes of a beam.
(a) Rectangular section of a bar;
(b) A thin bar and how it can buckle;
(c) Commonly used section for a load
bearing bar.

The use of pillars or columns is also very
common in buildings and bridges. A pillar with
rounded ends as shown in Fig. 9.10(a) supports
less load than that with a distributed shape at
the ends [Fig. 9.10(b)]. The precise design of a
bridge or a building has to take into account
the conditions under which it will function, the
cost and long period, reliability of usable
material, etc.
= <=

N —1

N—
_ >
(@) (b)

Fig. 9.10 Pillars or columns: (a) a pillar with rounded
ends, (b) Pillar with distributed ends.

The answer to the question why the maximum
height of a mountain on earth is ~10 km can
also be provided by considering the elastic
properties of rocks. A mountain base is not under
uniform compression and this provides some
shearing stress to the rocks under which they
can flow. The stress due to all the material on
the top should be less than the critical shearing
stress at which the rocks flow.

At the bottom of a mountain of height h, the
force per unit area due to the weight of the
mountain is hpg where p is the density of the
material of the mountain and g is the acceleration
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due to gravity. The material at the bottom 30 x 10” N m2. Equating this to hpg, with

experiences this force in the vertical direction, p =3 x 10® kg m™3 gives

and the sides of the mountain are free. Therefore, hpg =30 x 107 Nm2,

this is not a case of pressure or bulk compression. h = 30x10°Nm?2/3x10°kgm=x10ms?
There is a shear component, approximately hpg =10 km

itself. Now the elastic limit for a typical rock is ~ which is more than the height of Mt. Everest!

SUMMARY

1.  Stress is the restoring force per unit area and strain is the fractional change in dimension.
In general there are three types of stresses (a) tensile stress — longitudinal stress
(associated with stretching) or compressive stress (associated with compression),
(b) shearing stress, and (c) hydraulic stress.

2.  For small deformations, stress is directly proportional to the strain for many materials.
This is known as Hooke’s law. The constant of proportionality is called modulus of
elasticity. Three elastic moduli viz., Young’'s modulus, shear modulus and bulk modulus
are used to describe the elastic behaviour of objects as they respond to deforming forces
that act on them.

A class of solids called elastomers does not obey Hooke’s law.
3.  When an object is under tension or compression, the Hooke’s law takes the form
F/A =YAL/L
where AL/Lis the tensile or compressive strain of the object, F is the magnitude of the
applied force causing the strain, A is the cross-sectional area over which F is applied
(perpendicular to A) and Y is the Young’s modulus for the object. The stress is F/A.

4. A pair of forces when applied parallel to the upper and lower faces, the solid deforms so
that the upper face moves sideways with respect to the lower. The horizontal displacement
AL of the upper face is perpendicular to the vertical height L. This type of deformation is
called shear and the corresponding stress is the shearing stress. This type of stress is
possible only in solids.

In this kind of deformation the Hooke’s law takes the form

F/A=GxAL/L
where AL is the displacement of one end of object in the direction of the applied force F,
and G is the shear modulus.

5.  When an object undergoes hydraulic compression due to a stress exerted by a surrounding
fluid, the Hooke’s law takes the form

p=B(V/V),
where p is the pressure (hydraulic stress) on the object due to the fluid, AV/V (the
volume strain) is the absolute fractional change in the object’s volume due to that
pressure and B is the bulk modulus of the object.

POINTS TO PONDER

1. Inthe case of a wire, suspended from celing and stretched under the action of a weight (F)
suspended from its other end, the force exerted by the ceiling on it is equal and opposite
to the weight. However, the tension at any cross-section A of the wire is just F and not
2F. Hence, tensile stress which is equal to the tension per unit area is equal to F/A.

2. Hooke’s law is valid only in the linear part of stress-strain curve.

The Young’s modulus and shear modulus are relevant only for solids since only solids
have lengths and shapes.

4. Bulk modulus is relevant for solids, liquid and gases. It refers to the change in volume
when every part of the body is under the uniform stress so that the shape of the body
remains unchanged.
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Metals have larger values of Young’s modulus than alloys and elastomers. A material
with large value of Young’s modulus requires a large force to produce small changes in
its length.

In daily life, we feel that a material which stretches more is more elastic, but it a is
misnomer. In fact material which stretches to a lesser extent for a given load is considered
to be more elastic.

In general, a deforming force in one direction can produce strains in other directions
also. The proportionality between stress and strain in such situations cannot be described
by just one elastic constant. For example, for a wire under longitudinal strain, the
lateral dimensions (radius of cross section) will undergo a small change, which is described
by another elastic constant of the material (called Poisson ratio).

Stress is not a vector quantity since, unlike a force, the stress cannot be assigned a
specific direction. Force acting on the portion of a body on a specified side of a section
has a definite direction.

9.1

9.2

9.3

EXERCISES

A steel wire of length 4.7 m and cross-sectional area 3.0 x 105 m? stretches by the same
amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10 m? under
a given load. What is the ratio of the Young’s modulus of steel to that of copper?

Figure 9.11 shows the strain-stress curve for a given material. What are (a) Young’s
modulus and (b) approximate yield strength for this material?

_
~250 ]

i
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a 50~

0 0.001 0.002 0.003 0.004
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Fig. 9.11
The stress-strain graphs for materials A and B are shown in Fig. 9.12.
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Fig. 9.12
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The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?

9.4 Read the following two statements below carefully and state, with reasons, if it is true
or false.
(@) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.

9.5 Two wires of diameter 0.25 cm, one made of steel and the other made of brass are
loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of
brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.

[/ [ /LS

1.5m
Steel

C 40kg

1.0 m
Brass

[ ] 6.0ke

Fig. 9.13

9.6 The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a
vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The
shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?

9.7 Four identical hollow cylindrical columns of mild steel support a big structure of mass
50,000 kg. The inner and outer radii of each column are 30 and 60 cm respectively.
Assuming the load distribution to be uniform, calculate the compressional strain of
each column.

9.8 A piece of copper having a rectangular cross-section of 15.2 mm x 19.1 mm is pulled in
tension with 44,500 N force, producing only elastic deformation. Calculate the resulting
strain?

9.9 A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum
stress is not to exceed 10® N m~2, what is the maximum load the cable can support ?

9.10 A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long.
Those at each end are of copper and the middle one is of iron. Determine the ratios of
their diameters if each is to have the same tension.

9.11 A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is
whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle.
The cross-sectional area of the wire is 0.065 cm?. Calculate the elongation of the wire
when the mass is at the lowest point of its path.

9.12 Compute the bulk modulus of water from the following data: Initial volume = 100.0
litre, Pressure increase = 100.0 atm (1 atm = 1.013 x 10° Pa), Final volume = 100.5
litre. Compare the bulk modulus of water with that of air (at constant temperature).
Explain in simple terms why the ratio is so large.

9.13 What is the density of water at a depth where pressure is 80.0 atm, given that its
density at the surface is 1.03 x 103 kg m3?

9.14 Compute the fractional change in volume of a glass slab, when subjected to a hydraulic
pressure of 10 atm.

9.15 Determine the volume contraction of a solid copper cube, 10 cm on an edge, when
subjected to a hydraulic pressure of 7.0 x 10° Pa.

9.16 How much should the pressure on a litre of water be changed to compress it by 0.10%?
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Additional Exercises

9.17 Anvils made of single crystals of diamond, with the shape as shown in
Fig. 9.14, are used to investigate behaviour of materials under very high pressures. Flat
faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are
subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?

Diamond cones Metal gasket

Fig. 9.14
9.18 A rod of length 1.05 m having negligible mass is supported at its ends by two wires of
steel (wire A) and aluminium (wire B) of equal lengths as shown in
Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm? and 2.0 mm?,
respectively. At what point along the rod should a mass m be suspended in order to
produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

YT

1.05m

A D

Fig. 9.15

9.19 A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 102 cm? is
stretched, well within its elastic limit, horizontally between two pillars. A mass of 100
g is suspended from the mid-point of the wire. Calculate the depression at the mid-
point.

9.20 Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0
mm. What is the maximum tension that can be exerted by the riveted strip if the
shearing stress on the rivet is not to exceed 6.9 x 107 Pa? Assume that each rivet is to
carry one quarter of the load.

9.21 The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven
km beneath the surface of water. The water pressure at the bottom of the trench is
about 1.1 x 108 Pa. A steel ball of initial volume 0.32 m? is dropped into the ocean and
falls to the bottom of the trench. What is the change in the volume of the ball when it
reaches to the bottom?
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CHAPTER TEN

10.1 INTRODUCTION

In this chapter, we shall study some common physical
properties of liquids and gases. Liquids and gases can flow
and are therefore, called fluids. It is this property that
distinguishes liquids and gases from solids in a basic way.

Fluids are everywhere around us. Earth has an envelop of
air and two-thirds of its surface is covered with water. Water
is not only necessary for our existence; every mammalian
body constitute mostly of water. All the processes occurring
in living beings including plants are mediated by fluids. Thus
understanding the behaviour and properties of fluids is
important.

How are fluids different from solids? What is common in
liquids and gases? Unlike a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
whereas a gas fills the entire volume of its container. We
have learnt in the previous chapter that the volume of solids
can be changed by stress. The volume of solid, liquid or gas
depends on the stress or pressure acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pressure. The difference between gases
and solids or liquids is that for solids or liquids the change
in volume due to change of external pressure is rather small.
In other words solids and liquids have much lower
compressibility as compared to gases.

Shear stress can change the shape of a solid keeping its
volume fixed. The key property of fluids is that they offer
very little resistance to shear stress; their shape changes by
application of very small shear stress. The shearing stress
of fluids is about million times smaller than that of solids.

10.2 PRESSURE

A sharp needle when pressed against our skin pierces it. Our
skin, however, remains intact when a blunt object with a
wider contact area (say the back of a spoon) is pressed against
it with the same force. If an elephant were to step on a man’s
chest, his ribs would crack. A circus performer across whose
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chest a large, light but strong wooden plank is
placed first, is saved from this accident. Such
everyday experiences convince us that both the
force and its coverage area are important. Smaller
the area on which the force acts, greater is the
impact. This impact is known as pressure.

When an object is submerged in a fluid at
rest, the fluid exerts a force on its surface. This
force is always normal to the object’s surface.
This is so because if there were a component of
force parallel to the surface, the object will also
exert a force on the fluid parallel to it; as a
consequence of Newton’s third law. This force
will cause the fluid to flow parallel to the surface.
Since the fluid is at rest, this cannot happen.
Hence, the force exerted by the fluid at rest has
to be perpendicular to the surface in contact
with it. This is shown in Fig.10.1(a).

The normal force exerted by the fluid at a point
may be measured. An idealised form of one such
pressure-measuring device is shown in Fig.
10.1(b). It consists of an evacuated chamber with
a spring that is calibrated to measure the force
acting on the piston. This device is placed at a
point inside the fluid. The inward force exerted
by the fluid on the piston is balanced by the
outward spring force and is thereby measured.

% F

(a) (b)

Fig. 10.1 (a) The force exerted by the liquid in the
bealker on the submerged object or on the
walls is normal (perpendicular) to the
surface at all points.

(b) An idealised device for measuring
pressure.

If Fis the magnitude of this normal force on the
piston of area A then the average pressure P,
is defined as the normal force acting per unit
area.

F
Pu =1 (10.1)

In principle, the piston area can be made
arbitrarily small. The pressure is then defined
in a limiting sense as

p= Jm g (10.2)

Pressure is a scalar quantity. We remind the
reader that it is the component of the force
normal to the area under consideration and not
the (vector) force that appears in the numerator
in Eqgs. (10.1) and (10.2). Its dimensions are
[ML'T2]. The SI unit of pressure is N m=. It has
been named as pascal (Pa) in honour of the
French scientist Blaise Pascal (1623-1662) who
carried out pioneering studies on fluid pressure.
A common unit of pressure is the atmosphere
(atm), i.e. the pressure exerted by the
atmosphere at sea level (1 atm = 1.013 x 10° Pa).

Another quantity, that is indispensable in
describing fluids, is the density p. For a fluid of
mass moccupying volume V,

A 10.3

P=7 (10.3)

The dimensions of density are [ML™®]. Its SI
unit is kg m=. It is a positive scalar quantity. A
liquid is largely incompressible and its density
is therefore, nearly constant at all pressures.
Gases, on the other hand exhibit a large
variation in densities with pressure.

The density of water at 4°C (277 K) is
1.0 x 10° kg m™. The relative density of a
substance is the ratio of its density to the
density of water at 4°C. It is a dimensionless
positive scalar quantity. For example the relative
density of aluminium is 2.7. Its density is
2.7x 10°kgm™ The densities of some common
fluids are displayed in Table 10.1.

Table 10.1 Densities of some common fluids

at STP*
T
Water 1.00 x 10°
Sea water 1.03 x 10°
Mercury 13.6 x 10°
Ethyl alcohol 0.806 x 10°
Whole blood 1.06 x 10°
Air 1.29
Oxygen 1.43
Hydrogen 9.0 x 10~
Interstellar space  ~ 107

* STP means standard temperature (0°C) and 1 atm pressure.
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Example 10.1 The two thigh bones
(femurs), each of cross-sectional areal0 cm?
support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer Total cross-sectional area of the
femurs is A =2 x 10 cm? = 20 x 10™* m?. The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s™2). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

PaU:£:2x105Nm_2 <

10.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at rest.
This element is in the form of a right-
angled prism. The element is small so that
the effect of gravity can be ignored, but it
has been enlarged for the sake of clarity.

Fig. 10.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P, P, and P, on
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this element of area corresponding to the normal
forces F,, F, and F,_ as shown in Fig. 10.2 on the
faces BEFC, ADFC and ADEB denoted by A , A,
and A_ respectively. Then

F, sin® =F, F cos® =F, (byequilibrium)

A sind =A, A cosb=A (bygeometry)
Thus,

Fb _ Fc — Fa .
Ab Ac Aa ,

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it. The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

P,=F. =F, (10.4)

10.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 10.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P, and P,
respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (PA) acting
downward, at the bottom (P,A) acting upward.
If mg is weight of the fluid in the cylinder we
have

(P,-P) A=mg (10.5)

Now, if p is the mass density of the fluid, we
have the mass of fluid to be m = pV= phA so
that

P,-P= pgh (10.6)
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Fig.10.3 Fluid under gravity. The effect of gravity is
illustrated through pressure on a vertical
cylindrical column.

Pressure difference depends on the vertical
distance h between the points (1 and 2), mass
density of the fluid p and acceleration due to
gravity g. If the point 1 under discussion is
shifted to the top of the fluid (say, water), which
is open to the atmosphere, P, may be replaced
by atmospheric pressure (P,) and we replace P,
by P. Then Eq. (10.6) gives

P=P +pgh (10.7)

Thus, the pressure P, at depth below the
surface of a liquid open to the atmosphere is
greater than atmospheric pressure by an
amount pgh. The excess of pressure, PP, at
depth his called a gauge pressure at that point.

The area of the cylinder is not appearing in
the expression of absolute pressure in Eq. (10.7).
Thus, the height of the fluid column is important
and not cross-sectional or base area or the shape
of the container. The liquid pressure is the same
at all points at the same horizontal level (same
depth). The result is appreciated through the
example of hydrostatic paradox. Consider three
vessels A, B and C [Fig.10.4] of different shapes.
They are connected at the bottom by a horizontal
pipe. On filling with water, the level in the three
vessels is the same, though they hold different
amounts of water. This is so because water at
the bottom has the same pressure below each
section of the vessel.

Fig 10.4 Illustration of hydrostatic paradox. The
three vessels A, B and C contain different
amounts of liquids, all upto the same
height.

Example 10.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h=10m and p = 1000 kg m=. Take g = 10 m s
From Eq. (10.7)
P=P +pgh
=1.01 x10°Pa+ 1000 kg m®x 10 m s2x 10 m
=2.01 x 10° Pa
= 2 atm
This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures. <

10.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 x 105 Pa (1 atm). Italian scientist
Evangelista Torricelli (1608-1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.10.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, P,

P =pgh (10.8)
where p is the density of mercury and h is the
height of the mercury column in the tube.
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In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of p in Eq. (10.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.

The mm of Hg and torr are used in medicine
and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 10° Pa

An open tube manometer is a useful
instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 10.5 (b)]. The pressure P at
A is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P- P, given by Eq. (10.8) and is proportional
to manometer height h.

Fig 10.5 (a) The mercury barometer.
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(b) The open tube manometer
Fig 10.5 Two pressure measuring devices.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 10.3 The density of the
atmosphere at sea level is 1.29 kg/m?.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (10.7)
pgh =1.29kgm>x9.8ms*xh m=1.01x10°Pa
- h=7989 m=8km
In reality the density of air decreases with
height. So does the value of g. The atmospheric
cover extends with decreasing pressure over
100 km. We should also note that the sea level
atmospheric pressure is not always 760 mm of
Hg. A drop in the Hg level by 10 mm or more is a
sign of an approaching storm. <

L Example 10.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm x 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 x 10°® kg m3,
g=10 ms2)
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Answer Here h=1000m and p =1.03 x 103kgm?.
(a) From Eq. (10.6), absolute pressure
P=P +pgh
=1.01 x 10° Pa
+1.03x 10°kgm™= x10ms?2x 1000 m
= 104.01 x 10°Pa
= 104 atm
(b) Gauge pressure is P-P = pgh=P .
P,=1.03x 10°kgm~x 10 ms*x 1000 m
=103 x 10°Pa
~103 atm
(c) The pressure outside the submarine is
P=P +pghand the pressure inside itis P,.
Hence, the net pressure acting on the
window is gauge pressure, P = pgh. Since
the area of the window is A = 0.04 m?, the
force acting on it is
F=P,A=103x 10°Pax 0.04m?=4.12x 10°N
<

10.2.4 Hydraulic Machines

Let us now consider what happens when we
change the pressure on a fluid contained in a
vessel. Consider a horizontal cylinder with a
piston and three vertical tubes at different
points [Fig. 10.6 (a)]. The pressure in the
horizontal cylinder is indicated by the height of
liquid column in the vertical tubes. It is necessarily
the same in all. If we push the piston, the fluid level
rises in all the tubes, again reaching the same level
in each one of them.

C A B
Fig 10.6 (a) Whenever external pressure is applied

on any part of a fluid in a vessel, it is
equally transmitted in all directions.

This indicates that when the pressure on the
cylinder was increased, it was distributed
uniformly throughout. We can say whenever
external pressure is applied on any part of a
fluid contained in a vessel, it is transmitted
undiminished and equally in all directions.
This is another form of the Pascal’s law and it
has many applications in daily life.

A number of devices, such as hydraulic lift
and hydraulic brakes, are based on the Pascal’s
law. In these devices, fluids are used for
transmitting pressure. In a hydraulic lift, as
shown in Fig. 10.6 (b), two pistons are separated
by the space filled with a liquid. A piston of small
cross-section A is used to exert a force F, directly

F
on the liquid. The pressure P = Al1 is
transmitted throughout the liquid to the larger
cylinder attached with a larger piston of area A,,
which results in an upward force of P x A,.
Therefore, the piston is capable of supporting a
large force (large weight of, say a car, or a truck,

Archemedes’ Principle

Fluid appears to provide partial support to the objects placed in it. When a body is wholly or partially
immersed in a fluid at rest, the fluid exerts pressure on the surface of the body in contact with the
fluid. The pressure is greater on lower surfaces of the body than on the upper surfaces as pressure in
a fluid increases with depth. The resultant of all the forces is an upward force called buoyant force.
Suppose that a cylindrical body is immersed in the fluid. The upward force on the bottom of the body
is more than the downward force on its top. The fluid exerts a resultant upward force or buoyant force
on the body equal to (P,- P,) X A (Fig."10.3). We have seen in equation 10.4 that (P,-P)A = pghA. Now,
hA is the volume of the solid and phA is the weight of an equivaliant volume of the fluid. (P,-P )A = mg.
Thus, the upward force exerted is equal to the weight of the displaced fluid.

The result holds true irrespective of the shape of the object and here cylindrical object is considered
only for convenience. This is Archimedes’ principle. For totally immersed objects the volume of the
fluid displaced by.the object is equal to its own volume. If the density of the immersed object is more
than that of the fluid, the object will sink as the weight of the body is more than the upward thrust. If
the density of the object is less than that of the fluid, it floats in the fluid partially submerged. To
calculate the volume submerged, suppose the total volume of the object is V, and a part v, of it is
submerged in the fluid. Then, the upward force which is the weight of the displaced fluid is p gV,,
which must equal the weight of the body; p gV, = pgVor p./p, =V /V, The apparent weight of the
floating body is zero.

This principle can be summarised as; ‘the loss of weight of a body submerged (partially or fully) in
a fluid is equal to the weight of the fluid displaced’.
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KA,
placed on the platform) F,= PA,= —,

. By

1
changing the force at A, the platform can be
moved up or down. Thus, the applied force has

A
been increased by a factor of Xz and this factor
1

is the mechanical advantage of the device. The
example below clarifies it.

Fig 10.6 (b) Schematic diagram illustrating the principle
behind the hydraulic lift, a device used to
lift heavy loads.

Example 10.5 Two syringes of different
cross-sections (without needles) filled with
water are connected with a tightly fitted
rubber tube filled with water. Diameters of
the smaller piston and larger piston are 1.0
cm and 3.0 cm respectively. (a) Find the
force exerted on the larger piston when a
force of 10 N is applied to the smaller piston.
(b) If the smaller piston is pushed in through
6.0 cm, how much does the larger piston
move out?

Answer (a) Since pressure is transmitted
undiminished throughout the fluid,

3/2x102m)’
F2=ﬁFl=”( 23 m)2 % 10N
A 72'(1/2 x 1072 m)

=90 N

(b) Water is considered to be perfectly
incompressible. Volume covered by the
movement of smaller piston inwards is equal to
volume moved outwards due to the larger piston.

LA =LA,
A . 7(1/2x10%m)

L,=-LL, = ~Xx6x107m
4, 7(3/2%x107m)

2

~0.67 x 102m = 0.67 cm
Note, atmospheric pressure is common to both
pistons and has been ignored. <

‘ Example 10.6 In a car lift compressed air
exerts a force F, on a small piston having
a radius of 5.0 cm. This pressure is
transmitted to a second piston of radius
15 cm (Fig 10.7). If the mass of the car to
be lifted is 1350 kg, calculate F,. What is
the pressure necessary to.accomplish this
task? (g = 9.8 ms™?).

Answer Since pressure is transmitted
undiminished throughout the fluid,

x -2 2
F, = in = ”(51—0_;1’1)2 (1350kg x9.8ms ?)
A, 7(15 x 10" ?m)
=1470N
=~ 1.5x 10°N

The air pressure that will produce this
force is

This is almost double the atmospheric
pressure. <
Hydraulic brakes in automobiles also work on
the same principle. When we apply a little force
on the pedal with our foot the master piston

Archimedes (287-212 B.C.)

Archimedes was a Greek philosopher, mathematician, scientist and engineer. He

invented the catapult and devised a system of pulleys and levers to handle heavy

loads. The king of his native city Syracuse, Hiero II, asked him to determine if his gold

crown was alloyed with some cheaper metal, such as silver without damaging the crown.

The partial loss of weight he experienced while lying in his bathtub suggested a solution
to him. According to legend, he ran naked through the streets of Syracuse, exclaiming “Eureka,
eureka!”, which means “I have found it, I have found it!”
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moves inside the master cylinder, and the
pressure caused is transmitted through the
brake oil to act on a piston of larger area. A large
force acts on the piston and is pushed down
expanding the brake shoes against brake lining.
In this way, a small force on the pedal produces
a large retarding force on the wheel. An
important advantage of the system is that the
pressure set up by pressing pedal is transmitted
equally to all cylinders attached to the four
wheels so that the braking effort is equal on
all wheels.

10.3 STREAMLINE FLOW

So far we have studied fluids at rest. The study
of the fluids in motion is known as fluid
dynamics. When a water tap is turned on slowly,
the water flow is smooth initially, but loses its
smoothness when the speed of the outflow is
increased. In studying the motion of fluids, we
focus our attention on what is happening to
various fluid particles at a particular point in
space at a particular time. The flow of the fluid
is said to be steady if at any given point, the
velocity of each passing fluid particle remains
constant in time. This does not mean that the
velocity at different points in space is same. The
velocity of a particular particle may change as it
moves from one point to another. That is, at some
other point the particle may have a different
velocity, but every other particle which passes
the second point behaves exactly as the previous
particle that has just passed that point. Each
particle follows a smooth path, and the paths of
the particles do not cross each other.

\/\_‘/

P @ 9

(b)

Fig. 10.7 The meaning of streamlines. (a) A typical
trajectory of a fluid particle.
(b) A region of streamline flow.

The path taken by a fluid particle under a
steady flow is a streamline. It is defined as a
curve whose tangent at any point is in the
direction of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.10.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
permanent map of fluid flow, indicating how the
fluid streams. No two streamlines can cross, for
if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map of
flow is stationary in time. How do we draw closely
spaced streamlines ? If we intend to show
streamline of every flowing particle, we would
end up with a continuum of lines. Consider planes
perpendicular to the direction of fluid flow e.g.,
at three points P, R and Q in Fig.10.7 (b). The
plane pieces are so chosen that their boundaries
be determined by the same set of streamlines.
This means that number of fluid particles
crossing the surfaces as indicated at P, Rand Q
is the same. If area of cross-sections at these
points are A, A, and A, and speeds of fluid
particles are v,, v, and v,, then mass of fluid
Am, crossing at A, in a small interval of time At
is p,A,v, At. Similarly mass of fluid Am,, flowing
or crossing at A, in a small interval of time At is
PrARU; At and mass of fluid Am, is p A v, At
crossing at A,. The mass of liquid flowing out
equals the mass flowing in, holds in all cases.
Therefore,

PpALUAL = p AU AL = p A U AL (10.9)
For flow of incompressible fluids

pp = pR = pQ

Equation (10.9) reduces to

Av, = Ao, = AQUQ (10.10)

which is called the equation of continuity and
it is a statement of conservation of mass in flow
of incompressible fluids. In general

Av = constant (10.11)

Av gives the volume flux or flow rate and
remains constant throughout the pipe of flow.
Thus, at narrower portions where the
streamlines are closely spaced, velocity
increases and its vice versa. From (Fig 10.7b) it
is clear that A, > Ajor 1y, < vy, the fluid is
accelerated while passing from R to Q. This is
associated with a change in pressure in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent. One sees this when a fast flowing
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stream encounters rocks, small foamy
whirlpool-like regions called ‘white water
rapids are formed.

Figure 10.8 displays streamlines for some
typical flows. For example, Fig. 10.8(a) describes
a laminar flow where the velocities at different
points in the fluid may have different
magnitudes but their directions are parallel.
Figure 10.8 (b) gives a sketch of turbulent flow.

:

—_—
+
$
R —

(a) (b)

Fig. 10.8 (a) Some streamlines for fluid flow.
(b) A jet of air striking a flat plate placed
perpendicular to it. This is an example
of turbulent flow.

10.4 BERNOULLTI'S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful properties for steady
or streamline flows using the conservation
of energy.

Consider a fluid moving in a pipe of varying
cross-sectional area. Let the pipe be at varying
heights as shown in Fig. 10.9. We now suppose
that an incompressible fluid is flowing through
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A force is required to produce this
acceleration, which is caused by the fluid
surrounding it, the pressure must be different
in different regions. Bernoulli’'s equation is a
general expression that relates the pressure
difference between two points in a pipe to both
velocity changes (kinetic energy change) and
elevation (height) changes (potential energy

change). The Swiss Physicist Daniel Bernoulli
developed this relationship in 1738.

Consider the flow at two regions 1 (i.e., BC)
and 2 (i.e., DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval At, this fluid would have moved. Suppose
v, is the speed at B and v, at D, then fluid initially
at B has moved a distance v Atto C (v Atis small
enough to assume constant cross-section along
BC). In the same interval At the fluid initially at
D moves to E, a distance equal to v,At. Pressures
P, and P, act as shown on the plane faces of
areas A, and A, binding the two regions. The
work done on the fluid at left end (BC) is W, =
P A (v Af) = P AV. Since the same volume AV
passes through both the regions (from the
equation of continuity) the work done by the fluid
at the other end (DE) is W, = P,A,(v,Af) = P,AV or,
the work done on the fluid is —~P,AV. So the total
work done on the fluid is

W, - W,= (P-P) AV

Part of this work goes into changing the kinetic
energy of the fluid, and part goes into changing
the gravitational potential energy. If the density
of the fluid is p and Am = pA v At = pAV is the
mass passing through the pipe in time At, then
change in gravitational potential energy is

AU = pgAV (h,-h)

The change in its kinetic energy is

AK = p AV (v,2-v?)

We can employ the work — energy theorem
(Chapter 6) to this volume of the fluid and
this yields

1
(P—P) AV = (5] p AV (v,>~v?) + pgAV (h,~h)

We now divide each term by AV to obtain

1
(P,-P) = (EJ p (20 * pg (h,~h)

Daniel Bernoulli (1700-1782)

Daniel Bernoulli was a Swiss scientist and mathematician, who along with Leonard
Euler had the distinction of winning the French Academy prize for mathematics
10 times. He also studied medicine and served as a professor of anatomy and
botany for a while at Basle, Switzerland. His most well-known work was in
hydrodynamics, a subject he developed from a single principle: the conservation of
energy. His work included calculus, probability, the theory of vibrating strings,
and applied mathematics. He has been called the founder of mathematical physics.
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We can rearrange the above terms to obtain

1 1
P1+ (5] pv12 + pgh1 =P2+ (5] pUZ2 + pghz

(10.12)
This is Bernoulli’s equation. Since 1 and 2
refer to any two locations along the pipeline,
we may write the expression in general as

1
P+ (Ejpvz + pgh = constant (10.13)

l *,

Fig. 10.9 The flow of an ideal fluid in a pipe of
varying cross section. The fluid in a
section of length v, At moves to the section
of length v At in time At.

In words, the Bernoulli's relation may be
stated as follows: As we move along a streamline
the sum of the pressure (P), the kinetic energy

v2

p
per unit volume (T] and the potential energy

per unit volume (pgh) remains a constant.

Note that in applying the energy conservation
principle, there is an assumption that no energy
is lost due to friction. But in fact, when fluids
flow, some energy does get lost due to internal
friction. This arises due to the fact that in a
fluid flow, the different layers of the fluid flow
with different velocities. These layers exert
frictional forces on each other resulting in a loss
of energy. This property of the fluid is called
viscosity and is discussed in more detail in a
later section. The lost kinetic energy of the fluid
gets converted into heat energy. Thus,
Bernoulli’s equation ideally applies to fluids with
zero viscosity or non-viscous fluids. Another

restriction on application of Bernoulli theorem
is that the fluids must be incompressible, as
the elastic energy of the fluid is also not taken
into consideration. In practice, it has a large
number of useful applications and can help
explain a wide variety of phenomena for low
viscosity incompressible fluids. Bernoulli’s
equation also does not hold for non-steady or
turbulent flows, because in that situation
velocity and pressure are constantly fluctuating
in time.

When a fluid is at rest i.e., its velocity is zero
everywhere, Bernoulli’s equation becomes

P, +pgh, =P, +pgh,
(Pl_PZ) = pPg (hz_hl)
which is same as Eq. (10.6).

10.4.1 Speed of Efflux: Torricelli’s Law

The word efflux means fluid outflow. Torricelli
discovered that the speed of efflux from an open
tank is given by a formula identical to that of a
freely falling body. Consider a tank containing
a liquid of density p with a small hole in its side
at a height y, from the bottom (see Fig. 10.10).
The air above the liquid, whose surface is at
height y,, is at pressure P. From the equation
of continuity [Eq. (10.10)] we have

VA =U,A,

Vi

|

Fig. 10.10 Torricelli’s law. The speed of efflux, v,,
from the side of the container is given by
the application of Bernoulli's equation.
If the container is open at the top to the

atmosphere then v, = J2gh .
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If the cross-sectional area of the tank A, is
much larger than that of the hole (A, >>A ), then
we may take the fluid to be approximately at rest
at the top, i.e., v,= 0. Now, applying the Bernoulli
equation at points 1 and 2 and noting that at
the hole P, = P, the atmospheric pressure, we
have from Eq. (10.12)

1
P, +§pvf+ pgy, =P+p gy,
Taking y, -y, = h we have

2(P-P,)
v, =,/29 h+T

When P >>P and 2 g h may be ignored, the
speed of efflux is determined by the container
pressure. Such a situation occurs in rocket
propulsion. On the other hand, if the tank is
open to the atmosphere, then P = P_and

v, =y2gh (10.15)

This is also the speed of a freely falling body.
Equation (10.15) represents Torricelli’s law.

(10.14)

10.4.2 Venturi-meter

The Venturi-meter is a device to measure the
flow speed of incompressible fluid. It consists of
a tube with a broad diameter and a small
constriction at the middle as shown in
Fig. (10.11). A manometer in the form of a
U-tube is also attached to it, with one arm at
the broad neck point of the tube and the other
at constriction as shown in Fig. (10.11). The
manometer contains a liquid of density p_. The
speed v, of the liquid flowing through the tube
at the broad neck area A is to be measured
from equation of continuity Eq. (10.10) the speed

at the constriction becomes U, =—0U,. Then
a

using Bernoulli’'s equation (Eq.10.12) for (h,=h,),
we get

2
So that

1 2 é2—l
Pl—P2=2—pv1 a

This pressure difference causes the fluid in
the U-tube connected at the narrow neck to rise
in comparison to the other arm. The difference
in height h measure the pressure difference.

P+ o= pv? = Pyt o

2 2
5 PU (A/a)

(10.16)
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Fig. 10.11 A schematic diagram of Venturi-meter.

1 AY
P-P,=p,gh= 5= pv? g

So that the speed of fluid at wide neck is

e (2

The principle behind this meter has many
applications. The carburetor of automobile has
a Venturi channel (nozzle) through which air
flows with a high speed. The pressure is then
lowered at the narrow neck and the petrol
(gasoline) is sucked up in the chamber to provide
the correct mixture of air to fuel necessary for
combustion. Filter pumps or aspirators, Bunsen
burner, atomisers and sprayers [See Fig. 10.12]
used for perfumes or to spray insecticides work
on the same principle.

I - |-

Y

(10.17)

] [ @E
—

Fig. 10.12 The spray gun. Piston forces air at high
speeds causing a lowering of pressure
at the neck of the container.
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> Example 10.7 Blood velocity: The flow of
blood in a large artery of an anesthetised
dog is diverted through a Venturi meter.
The wider part of the meter has a cross-
sectional area equal to that of the artery.
A = 8 mm?. The narrower part has an area
a =4 mm?. The pressure drop in the artery
is 24 Pa. What is the speed of the blood in
the artery?

Answer We take the density of blood from Table
10.1 to be 1.06 x 10°® kg m™=. The ratio of the

A
areas is (Ej = 2. Using Eq. (10.17) we obtain

2x24Pa

v, = ~ 5 =0.123ms™"
1060kg m~ x (22- 1)

10.4.3 Blood Flow and Heart Attack
Bernoulli’s principle helps in explaining blood
flow in artery. The artery may get constricted
due to the accumulation of plaque on its inner
walls. In order to drive the blood through this
constriction a greater demand is placed on the
activity of the heart. The speed of the flow of
the blood in this region is raised which lowers
the pressure inside and the artery may
collapse due to the external pressure. The
heart exerts further pressure to open this
artery and forces the blood through. As the
blood rushes through the opening, the
internal pressure once again drops due to
same reasons leading to a repeat collapse.
This may result in heart attack.

b

(a)

O\:

(b)

10.4.4 Dynamic Lift

Dynamic lift is the force that acts on a body,
such as airplane wing, a hydrofoil or a spinning
ball, by virtue of its motion through a fluid. In
many games such as cricket, tennis, baseball,
or golf, we notice that a spinning ball deviates
from its parabolic trajectory as it moves through
air. This deviation can be partly explained on
the basis of Bernoulli’s principle.

(i) Ball moving without spin: Fig. 10.13(a)
shows the streamlines around a
non-spinning ball moving relative to a fluid.
From the symmetry of streamlines it is clear
that the velocity of fluid (air) above and below
the ball at corresponding points is the same
resulting in zero pressure difference. The air
therefore, exerts no upward or downward
force on the ball.

(ii) Ball moving with spin: A ball which is
spinning drags air along with it. If the
surface is rough more air will be dragged.
Fig 10.13(b) shows the streamlines of air
for a ball which is moving and spinning at
the same time. The ball is moving forward
and relative to it the air is moving
backwards. Therefore, the velocity of air
above the ball relative to the ball is larger
and below it is smaller (see Section 10.3).
The stream lines, thus, get crowded above
and rarified below.

This difference in the velocities of air results
in the pressure difference between the lower and
upper faces and there is a net upward force on
the ball. This dynamic lift due to spining is called
Magnus effect.

N\

==

(c)

Fig 10.13 (a)Fluid streaming past a static sphere. (b) Streamlines for a fluid around a sphere spinning clockuwise.

(c) Air flowing past an aerofoil.
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Aerofoil or lift on aircraft wing: Figure 10.13
(c) shows an aerofoil, which is a solid piece
shaped to provide an upward dynamic lift when
it moves horizontally through air. The cross-
section of the wings of an aeroplane looks
somewhat like the aerofoil shown in Fig. 10.13 (c)
with streamlines around it. When the aerofoil
moves against the wind, the orientation of the
wing relative to flow direction causes the
streamlines to crowd together above the wing
more than those below it. The flow speed on top
is higher than that below it. There is an upward
force resulting in a dynamic lift of the wings and
this balances the weight of the plane. The
following example illustrates this.

L Example 10.8 A fully loaded Boeing
aircraft has a mass of 3.3 x 10° kg. Its total
wing area is 500 m?. It is in level flight with
a speed of 960 km/h. (a) Estimate the
pressure difference between the lower and
upper surfaces of the wings (b) Estimate
the fractional increase in the speed of the
air on the upper surface of the wing relative
to the lower surface. [The density of air is p
=1.2 kg m3]

Answer (a) The weight of the Boeing aircraft is
balanced by the upward force due to the
pressure difference

APx A=3.3x 10°kg x 9.8
AP =(3.3x 10°kg x 9.8 m s72) / 500 m?

=6.5x10° Nm?

(b) We ignore the small height difference
between the top and bottom sides in Eq. (10.12).
The pressure difference between them is
then

AP=%(U§ —vlz)

where v, is the speed of air over the upper
surface and v, is the speed under the bottom
surface.

2AP

(g —U1)=m

2020-21

Taking the average speed
v, =(,+v)/2=960 km/h =267 ms",

we have

AP
(UZ - Ul)/va.v=p7z 0.08

av

The speed above the wing needs to be only 8
% higher than that below. <

10.5 VISCOSITY

Most of the fluids are not ideal ones and offer some
resistance to motion. This resistance to fluid motion
is like an internal friction analogous to friction when
a solid moves on a surface. It is called viscosity.
This force exists when there is relative motion
between layers of the liquid. Suppose we consider
a fluid like oil enclosed between two glass plates
as shown in Fig. 10.14 (a). The bottom plate is fixed
while the top plate is moved with a constant
velocity v relative to the fixed plate. If oil is
replaced by honey, a greater force is required to
move the plate with the same velocity. Hence
we say that honey is more viscous than oil. The
fluid in contact with a surface has the same
velocity as that of the surfaces. Hence, the layer
of the liquid in contact with top surface moves
with a velocity v and the layer of the liquid in
contact with the fixed surface is stationary. The
velocities of layers increase uniformly from
bottom (zero velocity) to the top layer (velocity
v). For any layer of liquid, its upper layer pulls
it forward while lower layer pulls it backward.
This results in force between the layers. This
type of flow is known as laminar. The layers of
liquid slide over one another as the pages of a
book do when it is placed flat on a table and a
horizontal force is applied to the top cover. When
a fluid is flowing in a pipe or a tube, then velocity
of the liquid layer along the axis of the tube is
maximum and decreases gradually as we move
towards the walls where it becomes zero, Fig.
10.14 (b). The velocity on a cylindrical surface
in a tube is constant.

On account of this motion, a portion of liquid,
which at some instant has the shape ABCD, take
the shape of AEFD after short interval of time
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(b)

Fig 10.14 (a) A layer of liquid sandwiched between
two parallel glass plates, in which the
lower plate is fixed and the upper one is
moving to the right with velocity v
(b) velocity distribution for viscous flow in

a pipe.
(A9). During this time interval the liquid has
undergone a shear strain of

Ax/l. Since, the strain in a flowing fluid
increases with time continuously. Unlike a solid,
here the stress is found experimentally to depend
on ‘rate of change of strain’ or ‘strain rate’ i.e.
Ax/(l AtY) or v/l instead of strain itself. The
coefficient of viscosity (pronounced ‘eta’) for a
fluid is defined as the ratio of shearing stress to
the strain rate.

_F/A_TL
v/l UVA

The SI unit of viscosity is poiseiulle (Pl). Its
other units are N s m?2 or Pa s. The dimensions
of viscosity are [ML'T"!]. Generally, thin liquids,
like water, alcohol, etc., are less viscous than
thick liquids, like coal tar, blood, glycerine, etc.
The coefficients of viscosity for some common

(10.18)

Film

‘0.01 kg

Fig. 10.15 Measurement of the coefficient of viscosity
of a liquid.

fluids are listed in Table 10.2. We point out two
facts about blood and water that you may find
interesting. As Table 10.2 indicates, blood is
‘thicker’ (more viscous) than water. Further, the
relative viscosity (v/n,_.) of blood remains
constant between 0 °C and 37 °C.

The viscosity of liquids decreases with
temperature, while it increases in the case of gases.

‘ Example 10.9 A metal block of area 0.10 m?
is connected to a 0.010 kg mass via a string
that passes over an ideal pulley (considered
massless and frictionless), as in Fig. 10.15.
A liquid with a film thickness of 0.30 mm
is placed between the block and the table.
When released the block moves to the right
with a constant speed of 0.085 m s!. Find
the coefficient of viscosity of the liquid.

Answer The metal block moves to the right
because of the tension in the string. The tension
T is equal in magnitude to the weight of the
suspended mass m. Thus, the shear force F is

F=T=mg=0.010kg x 9.8ms?=9.8x 102N

. 1072
Shear stress on the fluid = F/A = %N /m?
Strain rate = v_ LSF’
[l 0.30x10°
stress O
S

strain rate

(9.8 x 102 N) (0.30 x 10 m)
=  (0.085m s') (0.10m?)

=3.46x10%Pas
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Table10.2 The viscosities of some fluids

Criia 10| viscositytme)

Water 20 1.0
100 0.3
Blood 37 2.7
Machine Oil 16 113
38 34
Glycerine 20 830
Honey = 200
Air 0 0.017
40 0.019

10.5.1 Stokes’ Law

When a body falls through a fluid it drags the
layer of the fluid in contact with it. A relative
motion between the different layers of the fluid
is set and, as a result, the body experiences a
retarding force. Falling of a raindrop and
swinging of a pendulum bob are some common
examples of such motion. It is seen that the
viscous force is proportional to the velocity of
the object and is opposite to the direction of
motion. The other quantities on which the force
F depends are viscosity n of the fluid and radius
a of the sphere. Sir George G. Stokes (1819-
1903), an English scientist enunciated clearly
the viscous drag force F as

(10.19)

This is known as Stokes’ law. We shall not
derive Stokes’ law.

This law is an interesting example of retarding
force, which is proportional to velocity. We can
study its consequences on an object falling
through a viscous medium. We consider a
raindrop in air. It accelerates initially due to
gravity. As the velocity increases, the retarding
force also increases. Finally, when viscous force
plus buoyant force becomes equal to the force
due to gravity, the net force becomes zero and so
does the acceleration. The sphere (raindrop) then
descends with a constant velocity. Thus, in
equilibrium, this terminal velocity v, is given by

F=6nnav

6rnav, = (4n/3) @’ (p-olg

2020-21

where p and ¢ are mass densities of sphere and
the fluid, respectively. We obtain

v, =2a (p-o)g / (9n) (10.20)

So the terminal velocity v, depends on the
square of the radius of the sphere and inversely
on the viscosity of the medium.

You may like to refer back to Example 6.2 in
this context.

L Example 10.10 The terminal velocity of a
copper ball of radius 2.0 mm falling through
a tank of oil at 20°C is 6.5 cm s!. Compute
the viscosity of the oil at 20°C. Density of
oil is 1.5 x10°® kg m3, density of copper is
8.9 x 102 kg m™.

AnswerWe have v,=6.5x10?ms', a=2x 10°m,
g=9.8ms?, p=8.9x10°kgm?3,

6=1.5x10*kg m™. From Eq. (10.20)

gx (2%x10°)?m®x 9.8ms™
9 6.5 x10%2ms"’

= 99x10'kgm!s?! <

ns= x 7.4 x10°kg m™

10.6 SURFACE TENSION

You must have noticed that, oil and water do
not mix; water wets you and me but not ducks;
mercury does not wet glass but water sticks to
it, oil rises up a cotton wick, inspite of gravity,
Sap and water rise up to the top of the leaves of
the tree, hair of a paint brush do not cling
together when dry and even when dipped in
water but form a fine tip when taken out of it.
All these and many more such experiences are
related with the free surfaces of liquids. As
liquids have no definite shape but have a
definite volume, they acquire a free surface when
poured in a container. These surfaces possess
some additional energy. This phenomenon is
known as surface tension and it is concerned
with only liquid as gases do not have free
surfaces. Let us now understand this
phenomena.
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10.6.1 Surface Energy

A liquid stays together because of attraction
between molecules. Consider a molecule well
inside a liquid. The intermolecular distances are
such that it is attracted to all the surrounding
molecules [Fig. 10.16(a)]. This attraction results
in a negative potential energy for the molecule,
which depends on the number and distribution
of molecules around the chosen one. But the
average potential energy of all the molecules is
the same. This is supported by the fact that to
take a collection of such molecules (the liquid)

terms of this fact. What is the energy required
for having a molecule at the surface? As
mentioned above, roughly it is half the energy
required to remove it entirely from the liquid
i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid
consists of molecules moving about, there cannot
be a perfectly sharp surface. The density of the
liquid molecules drops rapidly to zero around
z = 0 as we move along the direction indicated
Fig 10.16 (c) in a distance of the order of a few
molecular sizes.
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Fig. 10.16 Schematic picture of molecules in a liquid, at the surface and balance of forces. (a) Molecule inside
a liquid. Forces on a molecule due to others are shown. Direction of arrows indicates attraction of
repulsion. (b) Same, for a molecule at a surface. (c) Balance of attractive (Al and repulsive (R) forces.

and to disperse them far away from each other
in order to evaporate or vaporise, the heat of
evaporation required is quite large. For water it
is of the order of 40 kJ/mol.

Let us consider a molecule near the surface
Fig. 10.16(b). Only lower half side of it is
surrounded by liquid molecules. There is some
negative potential energy due to these, but
obviously it is less than that of a molecule in
bulk, i.e., the one fully inside. Approximately
it is half of the latter. Thus, molecules on a
liquid surface have some extra energy in
comparison to molecules in the interior. A
liquid, thus, tends to have the least surface
area which external conditions permit.
Increasing surface area requires energy. Most
surface phenomenon can be understood in

10.6.2 Surface Energy and Surface Tension

As we have discussed that an extra energy is
associated with surface of liquids, the creation
of more surface (spreading of surface) keeping
other things like volume fixed requires
additional energy. To appreciate this, consider
a horizontal liquid film ending in bar free to slide

over parallel guides Fig (10.17).
—>|die—

(a) (b)
Fig. 10.17 Stretching a film. (@) A film in equilibrium;
(b) The film stretched an extra distance.
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Suppose that we move the bar by a small
distance d as shown. Since the area of the
surface increases, the system now has more
energy, this means that some work has been
done against an internal force. Let this internal
force be F, the work done by the applied force is
F-d = Fd. From conservation of energy, this is
stored as additional energy in the film. If the
surface energy of the film is S per unit area, the
extra area is 2dl A film has two sides and the
liquid in between, so there are two surfaces and
the extra energy is

S (2d) = Fd (10.21)
Or, S=Fd/2dl=F/2l (10.22)

This quantity S is the magnitude of surface
tension. It is equal to the surface energy per unit
area of the liquid interface and is also equal to
the force per unit length exerted by the fluid on
the movable bar.

So far we have talked about the surface of one
liquid. More generally, we need to consider fluid
surface in contact with other fluids or solid
surfaces. The surface energy in that case depends
on the materials on both sides of the surface. For
example, if the molecules of the materials attract
each other, surface energy is reduced while if they
repel each other the surface energy is increased.
Thus, more appropriately, the surface energy is
the energy of the interface between two materials
and depends on both of them.

We make the following observations from
above:

(i) Surface tension is a force per unit length
(or surface energy per unit area) acting in
the plane of the interface between the plane
of the liquid and any other substance; it also
is the extra energy that the molecules at the
interface have as compared to molecules in
the interior.

(ii) At any point on the interface besides the
boundary, we can draw a line and imagine
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equal and opposite surface tension forces S
per unit length of the line acting
perpendicular to the line, in the plane of the
interface. The line is in equilibrium. To be
more specific, imagine a line of atoms or
molecules at the surface. The atoms to the
left pull the line towards them; those to the
right pull it towards them! This line of atoms
is in equilibrium under tension. If the line
really marks the end of the interface, as in
Figure 10.16 (a) and (b) there is only the force
S per unit length acting inwards.

Table 10.3 gives the surface tension of various
liquids. The value of surface tension depends
on temperature. Like viscosity, the surface
tension of a liquid usually falls with
temperature.

Table 10.3 Surface tension of some liquids at the
temperatures indicated with the
heats of the vaporisation

Surface Heat of
Tension vaporisation
(N/m) (kJ/mol)

Helium -270 0.000239 0.115
Oxygen -183 0.0132 7.1
Ethanol 20 0.0227 40.6
Water 20 0.0727 44.16
Mercury 20 0.4355 63.2

A fluid will stick to a solid surface if the
surface energy between fluid and the solid is
smaller than the sum of surface energies
between solid-air, and fluid-air. Now there is
attraction between the solid surface and the
liquid. It can be directly measured
experimentaly as schematically shown in Fig.
10.18. A flat vertical glass plate, below which a
vessel of some liquid is kept, forms one arm of
the balance. The plate is balanced by weights
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on the other side, with its horizontal edge just
over water. The vessel is raised slightly till the
liquid just touches the glass plate and pulls it
down a little because of surface tension. Weights
are added till the plate just clears water.

A

I W

Fig. 10.18 Measuring Surface Tension.

Suppose the additional weight required is W.
Then from Eq. 10.22 and the discussion given
there, the surface tension of the liquid-air
interface is

S,.= (W/20) = (mg/ 21) (10.23)

where m is the extra mass and lis the length of
the plate edge. The subscript (la) emphasises
the fact that the liquid-air interface tension is
involved.

10.6.3 Angle of Contact

The surface of liquid near the plane of contact,
with another medium is in general curved. The
angle between tangent to the liquid surface at
the point of contact and solid surface inside the
liquid is termed as angle of contact. It is denoted
by 6. It is different at interfaces of different pairs
of liquids and solids. The value of 8 determines
whether a liquid will spread on the surface of a
solid or it will form droplets on it. For example,
water forms droplets on lotus leaf as shown in
Fig. 10.19 (a) while spreads over a clean plastic
plate as shown in Fig. 10.19(b).
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Fig. 10.19 Different shapes of water drops with
interfacial tensions (a) on a lotus leaf (b)
on a clean plastic plate.
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We consider the three interfacial tensions at
all the three interfaces, liquid-air, solid-air and
solid-liquid denoted by S, S_ and S, respectively
as given in Fig. 10.19 (a) and (b). At the line of
contact, the surface forces between the three media
must be in equilibrium. From the Fig. 10.19(b) the
following relation is easily derived.

Slacose + Ssl= S

» (10.24)

The angle of contact is an obtuse angle if
S, > S, as in the case of water-leaf interface
while it is an acute angle if S| < S_ as in the
case of water-plastic interface. When 6 is an
obtuse angle then molecules of liquids are
attracted strongly to themselves and weakly to
those of solid, it costs a lot of energy to create a
liquid-solid surface, and liquid then does not
wet the solid. This is what happens with water
on a waxy or oily surface, and with mercury on
any surface. On the other hand, if the molecules
of the liquid are strongly attracted to those of
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the solid, this will reduce S, and therefore,
cos 0 may increase or 6 may decrease. In this
case 0 is an acute angle. This is what happens
for water on glass or on plastic and for kerosene
oil on virtually anything (it just spreads). Soaps,
detergents and dying substances are wetting
agents. When they are added the angle of
contact becomes small so that these may
penetrate well and become effective. Water
proofing agents on the other hand are added to
create a large angle of contact between the water
and fibres.

10.6.4 Drops and Bubbles

One consequence of surface tension is that free
liquid drops and bubbles are spherical if effects
of gravity can be neglected. You must have seen
this especially clearly in small drops just formed
in a high-speed spray or jet, and in soap bubbles
blown by most of us in childhood. Why are drops
and bubbles spherical? What keeps soap
bubbles stable?

As we have been saying repeatedly, a liquid-
air interface has energy, so for a given volume
the surface with minimum energy is the one with
the least area. The sphere has this property.
Though it is out of the scope of this book, but
you can check that a sphere is better than at
least a cube in this respect! So, if gravity and
other forces (e.g. air resistance) were ineffective,
liquid drops would be spherical.

Another interesting consequence of surface
tension is that the pressure inside a spherical
drop Fig. 10.20(a) is more than the pressure
outside. Suppose a spherical drop of radius r is
in equilibrium. If its radius increase by Ar. The
extra surface energy is

[4n(r + Ar)2- 4nr?] S = 8nr Ar S (10.25)

If the drop is in equilibrium this energy cost is
balanced by the energy gain due to
expansion under the pressure difference (P, - P))

between the inside of the bubble and the outside.
The work done is

W= (P~ P) 4nr’Ar (10.26)
so that
(P-P)=(2S,/1 (10.27)
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In general, for a liquid-gas interface, the
convex side has a higher pressure than the
concave side. For example, an air bubble in a
liquid, would have higher pressure inside it.
See Fig 10.20 (b).

P, P,

Y Wa
o

S
(@) (b)

Fig. 10.20 Drop, cavity and bubble of radius r.

A bubble Fig 10.20 (c) differs from a drop
and a cavity; in this it has two interfaces.

Applying the above argument we have for a
bubble

(P-P)=(4S,/D (10.28)

This is probably why you have to blow hard,
but not too hard, to form a soap bubble. A little
extra air pressure is needed inside!

10.6.5 Capillary Rise

One consequence of the pressure difference
across a curved liquid-air interface is the well-
known effect that water rises up in a narrow
tube in spite of gravity. The word capilla means
hair in Latin; if the tube were hair thin, the rise
would be very large. To see this, consider a
vertical capillary tube of circular cross section
(radius a) inserted into an open vessel of water
(Fig. 10.21). The contact angle between water

o
P, r

A ;E ) %49

(a) (b)
Fig. 10.21 Capillary rise, (a) Schematic picture of a

narrow tube immersed water.
(b) Enlarged picture near interface.



MECHANICAL PROPERTIES OF FLUIDS

269

and glass is acute. Thus the surface of water in
the capillary is concave. This means that
there is a pressure difference between the
two sides of the top surface. This is given by

(P-P)=(2S/r)=2S/(asec 0)
=(2S/a) cos 6 (10.29)

Thus the pressure of the water inside the
tube, just at the meniscus (air-water interface)
is less than the atmospheric pressure. Consider
the two points A and B in Fig. 10.21(a). They
must be at the same pressure, namely

P,+hpg=P =P, (10.30)
where p is the density of water and his called
the capillary rise [Fig. 10.21(a)]. Using
Eq. (10.29) and (10.30) we have

hpg=(P-P)=(2Scos 0)/a (10.31)

The discussion here, and the Egs. (10.26) and
(10.27) make it clear that the capillary rise is
due to surface tension. It is larger, for a smaller
a. Typically it is of the order of a few cm for fine
capillaries. For example, if a = 0.05 cm, using
the value of surface tension for water (Table
10.3), we find that

h=2S/(pgaq)

_ 2x(0.073 N m™)
(10°kgm™) (9.8 ms?)(5 x 10* m)

=2.98%x 102 m =2.98 cm

Notice that if the liquid meniscus is convex,
as for mercury, i.e., if cos 6 is negative then from
Eq. (10.30) for example, it is clear that the liquid
will be lower in the capillary !

10.6.6 Detergents and Surface Tension

We clean dirty clothes containing grease and oil
stains sticking to cotton or other fabrics by
adding detergents or soap to water, soaking
clothes in it and shaking. Let us understand
this process better.

Washing with water does not remove grease
stains. This is because water does not wet greasy
dirt; i.e., there is very little area of contact
between them. If water could wet grease, the flow
of water could carry some grease away.
Something of this sort is achieved through
detergents. The molecules of detergents are

hairpin shaped, with one end attracted to water
and the other to molecules of grease, oil or wax,
thus tending to form water-oil interfaces. The result
is shown in Fig. 10.22 as a sequence of figures.

In our language, we would say that addition
of detergents, whose molecules attract at one
end and say, oil on the other, reduces drastically
the surface tension S (water-oil). It may even
become energetically favourable to form such
interfaces, i.e., globs of dirt surrounded by
detergents and then by water. This kind of
process using surface active detergents or
surfactants is important not only for cleaning,
but also in recovering oil, mineral ores etc.

Soap molecules
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S @
Water d \gater 2
s g~d

Soap molecules with head attracted to water.

Platter with particles of greasy dirt.

Water is added; dirt is not dislodged.

Detergent is added, the 'inert' waxy ends
of its molecules are attracted to boundary
where water meets dirt.

Inert ends surround dirt and the platter dirt
can now be dislodged say by moving water.

Dirt is held suspended, surrounded
by soap molecules.

Fig. 10.22 Detergent action in terms of what
detergent molecules do.
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P> Example 10.11 The lower end of a capillary
tube of diameter 2.00 mm is dipped 8.00
cm below the surface of water in a beaker.
What is the pressure required in the tube
in order to blow a hemispherical bubble at
its end in water? The surface tension of
water at temperature of the experiments is
7.30x102 Nm'!. 1 atmospheric pressure =
1.01 x 10°Pa, density of water = 1000 kg/m?,
g = 9.80 m s?2. Also calculate the excess
pressure.

Answer The excess pressure in a bubble of gas
in a liquid is given by 2S/r, where S is the
surface tension of the liquid-gas interface. You
should note there is only one liquid surface in
this case. (For a bubble of liquid in a gas, there
are two liquid surfaces, so the formula for

excess pressure in that case is 4S/r) The
radius of the bubble is r. Now the pressure
outside the bubble P, equals atmospheric
pressure plus the pressure due to 8.00 cm of
water column. That is
P =(1.01 x 10° Pa + 0.08 m x 1000 kg m™®
X 9.80m s?
=1.01784 X 10° Pa
Therefore, the pressure inside the bubble is
P, =P +2S/r
=1.01784x 10°Pa+(2%x7.3% 102Pam/10°m)
=(1.01784 + 0.00146) x 10° Pa
=1.02 X 10° Pa
where the radius of the bubble is taken
to be equal to the radius of the capillary tube,
since the bubble is hemispherical ! (The answer
has been rounded off to three significant
figures.) The excess pressure in the
bubble is 146 Pa. <

SUMMARY

1. The basic property of a fluid is that it can flow. The fluid does not have any
resistance to change of its shape. Thus, the shape of a fluid is governed by the

shape of its container.

2.  Aliquid is incompressible and has a free surface of its own. A gas is compressible
and it expands to occupy all the space available to it.

3. If Fis the normal force exerted by a fluid on an area A then the average pressure P_
is defined as the ratio of the force to area

P, =%
A

4, The unit of the pressure is the pascal (Pa). It is the same as N m?2. Other common

units of pressure are

1 atm=1.01x10°Pa

1 bar = 10° Pa

1 torr = 133 Pa = 0.133 kPa

1 mm of Hg = 1 torr = 133 Pa

5.  Pascal’s law states that: Pressure in a fluid at rest is same at all points which are at
the same height. A change in pressure applied to an enclosed fluid is transmitted
undiminished to every point of the fluid and the walls of the containing vessel.

6. The pressure in a fluid varies with depth h according to the expression

P=P +pgh

where p is the density of the fluid, assumed uniform.

7. The volume of an incompressible fluid passing any point every second in a pipe of
non uniform crossection is the same in the steady flow.
v A = constant (v is the velocity and A is the area of crossection)
The equation is due to mass conservation in incompressible fluid flow.
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10.

11.

Bernoulli’s principle states that as we move along a streamline, the sum of the
pressure (P), the kinetic energy per unit volume (pv?/2) and the potential energy per
unit volume (pgy) remains a constant.

P+ p1v?/2 + pgy = constant

The equation is basically the conservation of energy applied to non viscuss fluid
motion in steady state. There is no fluid which have zero viscosity, so the above
statement is true only approximately. The viscosity is like friction and converts the
kinetic energy to heat energy.

Though shear strain in a fluid does not require shear stress, when a shear stress is
applied to a fluid, the motion is generated which causes a shear strain growing
with time. The ratio of the shear stress to the time rate of shearing strain is known
as coefficient of viscosity, 7.

where symbols have their usual meaning and are defined in the text.

Stokes’ law states that the viscous drag force F on a sphere of radius a moving with
velocity v through a fluid of viscosity is, F = 6nnav.

Surface tension is a force per unit length (or surface energy per unit area) acting in
the plane of interface between the liquid and the bounding surface. It is the extra
energy that the molecules at the interface have as compared to the interior.

1.

POINTS TO PONDER

Pressure is a scalar quantity. The definition of the pressure as “force per unit area”
may give one false impression that pressure is a vector. The “force” in the numerator of
the definition is the component of the force normal to the area upon which it is
impressed. While describing fluids as a concept, shift from particle and rigid body
mechanics is required. We are concerned with properties that vary from point to point
in the fluid.

One should not think of pressure of a fluid as being exerted only on a solid like the
walls of a container or a piece of solid matter immersed in the fluid. Pressure exists at
all points in a fluid. An element of a fluid (such as the one shown in Fig. 10.2) is in
equilibrium because the pressures exerted on the various faces are equal.

The expression for pressure

P=P +pgh

holds true if fluid is incompressible. Practically speaking it holds for liquids, which
are largely incompressible and hence is a constant with height.

The gauge pressure is the difference of the actual pressure and the atmospheric pressure.
P-P =P

Man}dl pregssure—measuring devices measure the gauge pressure. These include the tyre
pressure gauge and the blood pressure gauge (sphygmomanometer).

A streamline is a map of fluid flow. In a steady flow two streamlines do not intersect as
it means that the fluid particle will have two possible velocities at the point.
Bernoulli’s principle does not hold in presence of viscous drag on the fluid. The work
done by this dissipative viscous force must be taken into account in this case, and P,

[Fig. 10.9] will be lower than the value given by Eq. (10.12).

As the temperature rises the atoms of the liquid become more mobile and the coefficient
of viscosity, n falls. In a gas the temperature rise increases the random motion of
atoms and n increases.

Surface tension arises due to excess potential energy of the molecules on the surface
in comparison to their potential energy in the interior. Such a surface energy is present
at the interface separating two substances at least one of which is a fluid. It is not the
property of a single fluid alone.
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Pressure [ML'T? pascal (Pa) 1 atm =1.013 x 10° Pa, Scalar
Density el ML kg m™® Scalar
Specific Gravity No No Psubstance ,  Scalar
Rvater

Co-efficient of viscosity 7 IML'T Pa s or Scalar

poiseiulles

(P1)
Surface Tension S M T7] Nm' Scalar

EXERCISES
10.1  Explain why

(a) The blood pressure in humans is greater at the feet than at the brain

(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of
its value at the sea level, though the height of the atmosphere is more than
100 km

() Hydrostatic pressure is a scalar quantity even though pressure is force
divided by area.

10.2  Explain why

(a) The angle of contact of mercury with glass is obtuse, while that of water
with glass is acute.

(b) Water on a clean glass surface tends to spread out while mercury on the
same surface tends to form drops. (Put differently, water wets glass while
mercury does not.)

(c) Surface tension of a liquid is independent of the area of the surface

(d) Water with detergent disolved in it should have small angles of contact.

(e) A drop of liquid under no external forces is always spherical in shape

10.3 Fill in the blanks using the word(s) from the list appended with each statement:

10.4

10.5

(a) Surface tension of liquids generally ... with temperatures (increases / decreases)

(b) Viscosity of gases ... with temperature, whereas viscosity of liquids ... with
temperature (increases / decreases)

(¢) For solids with elastic modulus of rigidity, the shearing force is proportional
to ..., while for fluids it is proportional to ... (shear strain / rate of shear
strain)

(d) For a fluid in a steady flow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>